System 2: A Systematic Approach towards Automated Performance Analysis and Tuning


I-Hsin Chung

11:10:00 - 11:35:00

101 , Mathematics Research Center Building (ori. New Math. Bldg.)

High productivity to the end user is critical in harnessing the power of high performance computing systems to solve science and engineering problems. It is a challenge to bridge the gap between the hardware complexity and the software limitations. Despite significant progress in language, compiler, and performance tools, tuning an application remains largely a manual task, and is done mostly by experts. In this work we propose a systematic approach towards automated performance analysis and tuning that we expect to improve the productivity of performance debugging significantly. Our approach seeks to build a framework that facilitates the combination of expert knowledge, compiler techniques, and performance research for performance diagnosis and solution discovery. With our framework, once a diagnosis and tuning strategy has been developed, it can be stored in an open and extensible database and thus be reused in the future. We demonstrate the effectiveness of our approach through the automated performance analysis and tuning of two scientific applications. We show that the tuning process is highly automated, and the performance improvement is significant.