Unlikely intersection for two-parameter families of polynomials

joint work with D. Ghioca and T. Tucker

Liang-Chung Hsia Department of Mathematics National Taiwan Normal University

Taipie-Xi'an Number Theory Workshop TIMS, October 14, 2015

- Unlikely Intersection
 Family of elliptic curves
- Arithmetic Dynamics
 Wandering v.s. Preperiodic
- Proof of the main results
- 5 General question/conjecture

・ロト ・ 同ト ・ ヨト ・ ヨト

Orbits, (pre)periodic points and wandering points

Let

$$arphi: \mathbb{P}^1 o \mathbb{P}^1 \quad ext{of degree } d \geq 2 ext{ over } \mathbb{C}.$$

Dynamical system associated to φ is roughly the classification of points in \mathbb{P}^1 under the action of φ via iterations $\{\varphi^n \mid n \ge 0\}$ Let $\alpha \in \mathbb{P}^1$. The (forward) orbit of α

$$\mathcal{O}_{\varphi}(\alpha) := \{\alpha, \varphi(\alpha), \varphi^2(\alpha), \ldots\}.$$

 α is called *preperiodic* for φ if $\sharp \mathcal{O}_{\varphi}(\alpha) < \infty$; wandering for φ if $\sharp \mathcal{O}_{\varphi}(\alpha) = \infty$.

Orbits, (pre)periodic points and wandering points

Let

$\varphi: \mathbb{P}^1 \to \mathbb{P}^1$ of degree $d \ge 2$ over \mathbb{C} .

Dynamical system associated to φ is roughly the classification of points in \mathbb{P}^1 under the action of φ via iterations $\{\varphi^n \mid n \ge 0\}$ Let $\alpha \in \mathbb{P}^1$. The (forward) orbit of α

$$\mathcal{O}_{\varphi}(\alpha) := \{\alpha, \varphi(\alpha), \varphi^2(\alpha), \ldots\}.$$

 α is called *preperiodic* for φ if $\sharp \mathcal{O}_{\varphi}(\alpha) < \infty$; wandering for φ if $\sharp \mathcal{O}_{\varphi}(\alpha) = \infty$.

Orbits, (pre)periodic points and wandering points

Let

$$arphi: \mathbb{P}^1 o \mathbb{P}^1 \quad ext{of degree } d \geq 2 ext{ over } \mathbb{C}.$$

Dynamical system associated to φ is roughly the classification of points in \mathbb{P}^1 under the action of φ via iterations $\{\varphi^n \mid n \ge 0\}$ Let $\alpha \in \mathbb{P}^1$. The (forward) orbit of α

$$\mathcal{O}_{\varphi}(\alpha) := \{\alpha, \varphi(\alpha), \varphi^2(\alpha), \ldots\}.$$

 α is called *preperiodic* for φ if $\sharp \mathcal{O}_{\varphi}(\alpha) < \infty$; wandering for φ if $\sharp \mathcal{O}_{\varphi}(\alpha) = \infty$.

Orbits, (pre)periodic points and wandering points

Let

$$arphi: \mathbb{P}^1 o \mathbb{P}^1 \quad ext{of degree } d \geq 2 ext{ over } \mathbb{C}.$$

Dynamical system associated to φ is roughly the classification of points in \mathbb{P}^1 under the action of φ via iterations $\{\varphi^n \mid n \ge 0\}$ Let $\alpha \in \mathbb{P}^1$. The (forward) orbit of α

$$\mathcal{O}_{\varphi}(\alpha) := \{\alpha, \varphi(\alpha), \varphi^2(\alpha), \ldots\}.$$

 α is called *preperiodic* for φ if $\sharp \mathcal{O}_{\varphi}(\alpha) < \infty$; wandering for φ if $\sharp \mathcal{O}_{\varphi}(\alpha) = \infty$.

Orbits, (pre)periodic points and wandering points

Let

$$\varphi: \mathbb{P}^1 \to \mathbb{P}^1$$
 of degree $d \ge 2$ over \mathbb{C} .

Dynamical system associated to φ is roughly the classification of points in \mathbb{P}^1 under the action of φ via iterations $\{\varphi^n \mid n \ge 0\}$ Let $\alpha \in \mathbb{P}^1$. The (forward) orbit of α

$$\mathcal{O}_{\varphi}(\alpha) := \{\alpha, \varphi(\alpha), \varphi^2(\alpha), \ldots\}.$$

 α is called *preperiodic* for φ if $\sharp \mathcal{O}_{\varphi}(\alpha) < \infty$; wandering for φ if $\sharp \mathcal{O}_{\varphi}(\alpha) = \infty$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Comparison: dynamical systems v.s. algebraic group *G* action by $\{\varphi^n\} \leftrightarrow$ action by End(*G*) preperiodic points \leftrightarrow torsion points wandering points \leftrightarrow point of infinite order

families of dynamical systems \longleftrightarrow families of algebraic groups parameter space \longleftrightarrow moduli curves (spaces)

Example

Comparison: dynamical systems v.s. algebraic group G action by $\{\varphi^n\} \longleftrightarrow$ action by End(G) preperiodic points \longleftrightarrow torsion points wandering points \longleftrightarrow point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of G(K). families of dynamical systems \longleftrightarrow families of algebraic groups parameter space \longleftrightarrow moduli curves (spaces)

Example

Comparison: dynamical systems v.s. algebraic group G action by $\{\varphi^n\} \longleftrightarrow$ action by End(G) preperiodic points \longleftrightarrow torsion points wandering points \longleftrightarrow point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of $\mathcal{G}(\mathcal{K})$. families of dynamical systems \longleftrightarrow families of algebraic groups parameter space \longleftrightarrow moduli curves (spaces)

Example

Comparison: dynamical systems v.s. algebraic group G action by $\{\varphi^n\} \longleftrightarrow$ action by End(G) preperiodic points \longleftrightarrow torsion points wandering points \longleftrightarrow point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of G(K). families of dynamical systems \longleftrightarrow families of algebraic groups parameter space \longleftrightarrow moduli curves (spaces)

Example

Comparison: dynamical systems v.s. algebraic group G action by $\{\varphi^n\} \longleftrightarrow$ action by End(G) preperiodic points \longleftrightarrow torsion points wandering points \longleftrightarrow point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of G(K). families of dynamical systems \longleftrightarrow families of algebraic groups parameter space \longleftrightarrow moduli curves (spaces)

Example

Comparison: dynamical systems v.s. algebraic group G action by $\{\varphi^n\} \longleftrightarrow$ action by End(G) preperiodic points \longleftrightarrow torsion points wandering points \longleftrightarrow point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of G(K). families of dynamical systems \longleftrightarrow families of algebraic groups parameter space \longleftrightarrow moduli curves (spaces)

Example

Comparison: dynamical systems v.s. algebraic group G action by $\{\varphi^n\} \longleftrightarrow$ action by End(G) preperiodic points \longleftrightarrow torsion points wandering points \longleftrightarrow point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of G(K). families of dynamical systems \longleftrightarrow families of algebraic groups parameter space \longleftrightarrow moduli curves (spaces)

Example

Comparison: dynamical systems v.s. algebraic group G action by $\{\varphi^n\} \longleftrightarrow$ action by End(G) preperiodic points \longleftrightarrow torsion points wandering points \longleftrightarrow point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of $\mathcal{G}(\mathcal{K})$. families of dynamical systems \longleftrightarrow families of algebraic groups parameter space \longleftrightarrow moduli curves (spaces)

Example

Comparison: dynamical systems v.s. algebraic group G action by $\{\varphi^n\} \longleftrightarrow$ action by End(G) preperiodic points \longleftrightarrow torsion points wandering points \longleftrightarrow point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of G(K). families of dynamical systems \longleftrightarrow families of algebraic groups parameter space \longleftrightarrow moduli curves (spaces)

Example

Comparison: dynamical systems v.s. algebraic group G action by $\{\varphi^n\} \longleftrightarrow$ action by End(G) preperiodic points \longleftrightarrow torsion points wandering points \longleftrightarrow point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of $G(\mathcal{K})$. families of dynamical systems \longleftrightarrow families of algebraic groups parameter space \longleftrightarrow moduli curves (spaces)

Example

Comparison: dynamical systems v.s. algebraic group Gaction by $\{\varphi^n\} \longleftrightarrow$ action by End(G)preperiodic points \longleftrightarrow torsion points wandering points \longleftrightarrow point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of G(K). families of dynamical systems \longleftrightarrow families of algebraic groups parameter space \longleftrightarrow moduli curves (spaces)

Example

Comparison: dynamical systems v.s. algebraic group G action by $\{\varphi^n\} \longleftrightarrow$ action by End(G) preperiodic points \longleftrightarrow torsion points wandering points \longleftrightarrow point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of G(K). families of dynamical systems \longleftrightarrow families of algebraic groups parameter space \longleftrightarrow moduli curves (spaces)

Example

Comparison: dynamical systems v.s. algebraic group G action by $\{\varphi^n\} \longleftrightarrow$ action by End(G) preperiodic points \longleftrightarrow torsion points wandering points \longleftrightarrow point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of G(K). families of dynamical systems \longleftrightarrow families of algebraic groups parameter space \longleftrightarrow moduli curves (spaces)

Example

Comparison: dynamical systems v.s. algebraic group G action by $\{\varphi^n\} \longleftrightarrow$ action by End(G) preperiodic points \longleftrightarrow torsion points wandering points \longleftrightarrow point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of G(K). families of dynamical systems \longleftrightarrow families of algebraic groups parameter space \longleftrightarrow moduli curves (spaces)

Example

Comparison: dynamical systems v.s. algebraic group G action by $\{\varphi^n\} \longleftrightarrow$ action by End(G) preperiodic points \longleftrightarrow torsion points wandering points \longleftrightarrow point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of G(K). families of dynamical systems \longleftrightarrow families of algebraic groups parameter space \longleftrightarrow moduli curves (spaces)

Example

Family of elliptic curves

A special case

Theorem (Y. Ihara, S. Lang, J.-P. Serre, J. Tate,)

Let $T \subset \mathbb{C}^2$ be an algebraic curve. If there are infinitely many points $(x, y) \in T$ such that both x and y are roots of unity, then the equation of T is of the form $X^m Y^n = \zeta$, where $m, n \in \mathbb{Z}$ and $\zeta \in \mu_{\infty}$ is a root of unity.

The theorem can reformulated as follows.

Theorem

Let T be an algebraic curve and let F_1 , F_2 be non-zero rational functions in $\mathbb{C}(T)$ such that there are infinitely many $P \in T(\mathbb{C})$ such that both $F_1(P)$ and $F_2(P)$ are roots of unity. Then, F_1 and F_2 are multiplicative dependent, i.e. there exist $m, n \in \mathbb{Z}$ (not both equal to zero) such that $F_1^m F_2^n = 1$.

Family of elliptic curves

A special case

Theorem (Y. Ihara, S. Lang, J.-P. Serre, J. Tate,)

Let $T \subset \mathbb{C}^2$ be an algebraic curve. If there are infinitely many points $(x, y) \in T$ such that both x and y are roots of unity, then the equation of T is of the form $X^m Y^n = \zeta$, where $m, n \in \mathbb{Z}$ and $\zeta \in \mu_{\infty}$ is a root of unity.

The theorem can reformulated as follows.

Theorem

Let T be an algebraic curve and let F_1, F_2 be non-zero rational functions in $\mathbb{C}(T)$ such that there are infinitely many $P \in T(\mathbb{C})$ such that both $F_1(P)$ and $F_2(P)$ are roots of unity. Then, F_1 and F_2 are multiplicative dependent, i.e. there exist $m, n \in \mathbb{Z}$ (not both equal to zero) such that $F_1^m F_2^n = 1$.

Family of elliptic curves

There are higher dimensional analogues of this theorem (i.e. T is an irreducible subvariety of torus \mathbb{G}_m^n) with "infinitely many" replaced by "Zariski dense".

Another generalization is the following theorem proved by E. Bombieri, D. Masser and U. Zannier.

Theorem (Bombieri-Masser-Zannier)

Let T be an absolutely irreducible curve defined over $\overline{\mathbb{Q}}$ and let x_1, \ldots, x_n be nonzero rational functions in $\overline{\mathbb{Q}}(T)$, multiplicative independent modulo constants. Then the points $P \in T(\overline{\mathbb{Q}})$ for which $x_1(P), \ldots, x_n(P)$ are multiplicative dependent, form a set of bounded height.

Family of elliptic curves

There are higher dimensional analogues of this theorem (i.e. T is an irreducible subvariety of torus \mathbb{G}_m^n) with "infinitely many" replaced by "Zariski dense".

Another generalization is the following theorem proved by E. Bombieri. D. Masser and U. Zannier.

Theorem (Bombieri-Masser-Zannier)

Let T be an absolutely irreducible curve defined over $\overline{\mathbb{Q}}$ and let x_1, \ldots, x_n be nonzero rational functions in $\overline{\mathbb{Q}}(T)$, multiplicative independent modulo constants. Then the points $P \in T(\overline{\mathbb{Q}})$ for which $x_1(P), \ldots, x_n(P)$ are multiplicative dependent, form a set of bounded height.

・ロン ・回 と ・ ヨ と ・ ヨ と

Family of elliptic curves

Legendre family of elliptic curves

Consider the one-parameter family of elliptic curves E_t given by the following Weierstrass equation

$$E_t: y^2 = x(x-1)(x-t)$$
, (the Legendre family)

and the two points

$$P = P_t = (2, \sqrt{4-2t}), \qquad Q = Q_t = (3, \sqrt{18-6t})$$

Question

Are there infinitely many $\lambda \in \mathbb{C}$ such that both P_{λ} and Q_{λ} are torsion points of E_{λ} ?

・ロン ・回 と ・ ヨ と ・ ヨ と …

Family of elliptic curves

Legendre family of elliptic curves

Consider the one-parameter family of elliptic curves E_t given by the following Weierstrass equation

$$E_t: y^2 = x(x-1)(x-t)$$
, (the Legendre family)

and the two points

$$P = P_t = (2, \sqrt{4-2t}), \qquad Q = Q_t = (3, \sqrt{18-6t})$$

Question

Are there infinitely many $\lambda \in \mathbb{C}$ such that both P_{λ} and Q_{λ} are torsion points of E_{λ} ?

Family of elliptic curves

- *P* and *Q* are viewed as points in $E_t(\overline{\mathbb{C}(t)})$.
- It's not hard to see that the set of parameters $\mathcal{T}(P) := \{\lambda \in \mathbb{C} \mid P_{\lambda} \text{ is a torsion of } E_{\lambda}\} \text{ (and } \mathcal{T}(Q) \text{ respectively) is an infinite set.}$
- On the other hand, neither *P* nor *Q* is a torsion point on the elliptic surface *E*_t (over $\mathbb{C}(t)$).
- Also, the two pionts P and Q are independent points of $E_t(\overline{\mathbb{C}(t)})$.

Family of elliptic curves

• *P* and *Q* are viewed as points in $E_t(\overline{\mathbb{C}(t)})$.

- It's not hard to see that the set of parameters $\mathcal{T}(P) := \{\lambda \in \mathbb{C} \mid P_{\lambda} \text{ is a torsion of } E_{\lambda}\}$ (and $\mathcal{T}(Q)$ respectively) is an infinite set.
- On the other hand, neither P nor Q is a torsion point on the elliptic surface E_t (over $\mathbb{C}(t)$).
- Also, the two pionts P and Q are independent points of $E_t(\overline{\mathbb{C}(t)})$.

Family of elliptic curves

- *P* and *Q* are viewed as points in $E_t(\overline{\mathbb{C}(t)})$.
- It's not hard to see that the set of parameters $\mathcal{T}(P) := \{\lambda \in \mathbb{C} \mid P_{\lambda} \text{ is a torsion of } E_{\lambda}\}$ (and $\mathcal{T}(Q)$ respectively) is an infinite set.
- On the other hand, neither P nor Q is a torsion point on the elliptic surface E_t (over $\mathbb{C}(t)$).
- Also, the two pionts P and Q are independent points of $E_t(\overline{\mathbb{C}(t)})$.

Family of elliptic curves

- *P* and *Q* are viewed as points in $E_t(\overline{\mathbb{C}(t)})$.
- It's not hard to see that the set of parameters $\mathcal{T}(P) := \{\lambda \in \mathbb{C} \mid P_{\lambda} \text{ is a torsion of } E_{\lambda}\}$ (and $\mathcal{T}(Q)$ respectively) is an infinite set.
- On the other hand, neither P nor Q is a torsion point on the elliptic surface E_t (over $\mathbb{C}(t)$).
- Also, the two pionts P and Q are independent points of $E_t(\overline{\mathbb{C}(t)})$.

・ロン ・回 と ・ヨン ・ヨン

Family of elliptic curves

- *P* and *Q* are viewed as points in $E_t(\overline{\mathbb{C}(t)})$.
- It's not hard to see that the set of parameters

 T(P) := {λ ∈ C | P_λ is a torsion of E_λ} (and *T*(Q) respectively) is an infinite set.
- On the other hand, neither P nor Q is a torsion point on the elliptic surface E_t (over $\mathbb{C}(t)$).
- Also, the two pionts P and Q are independent points of $E_t(\overline{\mathbb{C}(t)})$.

・ロン ・回 と ・ヨン ・ヨン

Family of elliptic curves

Masser-Zannier's result

Theorem (Masser-Zannier)

Let E_t , P_t and Q_t be given as above. Then, the intersection $\mathcal{T}(P) \cap \mathcal{T}(Q)$ is a finite set.

More general version of this theorem was also obtained (Masser-Zannier, 2011) and a version of the case of higher dimensional base was established (Habegger, 2011).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Family of elliptic curves

Masser-Zannier's result

Theorem (Masser-Zannier)

Let E_t , P_t and Q_t be given as above. Then, the intersection $\mathcal{T}(P) \cap \mathcal{T}(Q)$ is a finite set.

More general version of this theorem was also obtained (Masser-Zannier, 2011) and a version of the case of higher dimensional base was established (Habegger, 2011).

・ロン ・回 と ・ヨン ・ヨン

Wandering v.s. Preperiodic

(One parameter) family of polynomials

Theorem (Baker-DeMarco)

Let $d \ge 2$ be an integer, and fix $a, b \in \mathbb{C}$. The set of parameters $t \in \mathbb{C}$ such that both a and b are preperiodic for the polynomial map $P_t(z) = z^d + t$ is infinite if and only if $a^d = b^d$.

•
$$a^d = b^d \iff P_t(a) = P_t(b).$$

Generalizations ?

The two points a and b depend on the parameter t algebraically.

- More general family of polynomial maps.
- The case of families of rational maps.

(a)

Nandering v.s. Preperiodic

(One parameter) family of polynomials

Theorem (Baker-DeMarco)

Let $d \ge 2$ be an integer, and fix $a, b \in \mathbb{C}$. The set of parameters $t \in \mathbb{C}$ such that both a and b are preperiodic for the polynomial map $P_t(z) = z^d + t$ is infinite if and only if $a^d = b^d$.

• $a^d = b^d \iff P_t(a) = P_t(b).$

Generalizations ?

The two points a and b depend on the parameter t algebraically.

- More general family of polynomial maps.
- The case of families of rational maps.

・ロン ・回 と ・ ヨン ・ ヨン

Wandering v.s. Preperiodic

(One parameter) family of polynomials

Theorem (Baker-DeMarco)

Let $d \ge 2$ be an integer, and fix $a, b \in \mathbb{C}$. The set of parameters $t \in \mathbb{C}$ such that both a and b are preperiodic for the polynomial map $P_t(z) = z^d + t$ is infinite if and only if $a^d = b^d$.

•
$$a^d = b^d \iff P_t(a) = P_t(b).$$

Generalizations ?

• The two points *a* and *b* depend on the parameter *t* algebraically.

- More general family of polynomial maps.
- The case of families of rational maps.

() < </p>

Wandering v.s. Preperiodic

(One parameter) family of polynomials

Theorem (Baker-DeMarco)

Let $d \ge 2$ be an integer, and fix $a, b \in \mathbb{C}$. The set of parameters $t \in \mathbb{C}$ such that both a and b are preperiodic for the polynomial map $P_t(z) = z^d + t$ is infinite if and only if $a^d = b^d$.

•
$$a^d = b^d \iff P_t(a) = P_t(b).$$

Generalizations ?

• The two points *a* and *b* depend on the parameter *t* algebraically.

- More general family of polynomial maps.
- The case of families of rational maps.

Wandering v.s. Preperiodic

(One parameter) family of polynomials

Theorem (Baker-DeMarco)

Let $d \ge 2$ be an integer, and fix $a, b \in \mathbb{C}$. The set of parameters $t \in \mathbb{C}$ such that both a and b are preperiodic for the polynomial map $P_t(z) = z^d + t$ is infinite if and only if $a^d = b^d$.

•
$$a^d = b^d \iff P_t(a) = P_t(b).$$

Generalizations ?

• The two points *a* and *b* depend on the parameter *t* algebraically.

- More general family of polynomial maps.
- The case of families of rational maps.

Wandering v.s. Preperiodic

(One parameter) family of polynomials

Theorem (Baker-DeMarco)

Let $d \ge 2$ be an integer, and fix $a, b \in \mathbb{C}$. The set of parameters $t \in \mathbb{C}$ such that both a and b are preperiodic for the polynomial map $P_t(z) = z^d + t$ is infinite if and only if $a^d = b^d$.

•
$$a^d = b^d \iff P_t(a) = P_t(b).$$

Generalizations ?

- The two points *a* and *b* depend on the parameter *t* algebraically.
- More general family of polynomial maps.
- The case of families of rational maps.

Wandering v.s. Preperiodic

(One parameter) family of polynomials

Theorem (Baker-DeMarco)

Let $d \ge 2$ be an integer, and fix $a, b \in \mathbb{C}$. The set of parameters $t \in \mathbb{C}$ such that both a and b are preperiodic for the polynomial map $P_t(z) = z^d + t$ is infinite if and only if $a^d = b^d$.

•
$$a^d = b^d \iff P_t(a) = P_t(b).$$

Generalizations ?

- The two points *a* and *b* depend on the parameter *t* algebraically.
- More general family of polynomial maps.
- The case of families of rational maps.

・ロト ・ 同ト ・ ヨト ・ ヨト

Wandering v.s. Preperiodic

Family of dynamical systems and specialization

Consider morphisms

 $\mathbf{f}:\mathbb{P}^1 o\mathbb{P}^1$ of degree $d\geq 2$ over $\mathbb{C}(t)$

t as an indeterminate over $\mathbb C$

Then, for all but finitely many $t = \lambda \in \mathbb{C}$, $\mathbf{f}_{\lambda} : \mathbb{P}^{1} \to \mathbb{P}^{1}$ is of degree d over \mathbb{C} . Let $P, Q \in \mathbb{P}^{1}(\mathbb{C}(t))$ be given and put $\operatorname{PreP}_{\mathbf{f}}(P) := \{\lambda \in \mathbb{C} : P_{\lambda} \text{ is preperiodic for } \mathbf{f}_{\lambda}\}.$ $\operatorname{PreP}_{\mathbf{f}}(P, Q) := \{\lambda \in \mathbb{C} : \frac{P_{\lambda}}{\operatorname{both preperiodic for } \mathbf{f}_{t}\}}$

Characterize *P* and *Q* so that PreP_f(*P*, *Q*) is an infinite set

Wandering v.s. Preperiodic

Family of dynamical systems and specialization

Consider morphisms

 $\mathbf{f}:\mathbb{P}^1 o\mathbb{P}^1$ of degree $d\geq 2$ over $\mathbb{C}(t)$

t as an indeterminate over $\mathbb C$

Then, for all but finitely many $t = \lambda \in \mathbb{C}$,

 $\mathbf{f}_{\lambda}: \mathbb{P}^1 \to \mathbb{P}^1$ is of degree d over \mathbb{C} .

Let $P, Q \in \mathbb{P}^1(\mathbb{C}(t))$ be given and put

 $\begin{aligned} \mathsf{PreP}_{\mathbf{f}}(P) &:= \left\{ \lambda \in \mathbb{C} \ : \ P_{\lambda} \text{ is preperiodic for } \mathbf{f}_{\lambda} \right\}. \\ \mathsf{PreP}_{\mathbf{f}}(P, Q) &:= \left\{ \lambda \in \mathbb{C} \ : \ \begin{array}{c} P_{\lambda} \text{ and } Q_{\lambda} \text{ are} \\ \text{both preperiodic for } \mathbf{f}_{t} \end{array} \right\} \end{aligned}$

Characterize *P* and *Q* so that PreP_f(*P*, *Q*) is an infinite set

Wandering v.s. Preperiodic

Family of dynamical systems and specialization

Consider morphisms

 $\mathbf{f}:\mathbb{P}^1 o\mathbb{P}^1$ of degree $d\geq 2$ over $\mathbb{C}(t)$

t as an indeterminate over $\mathbb C$

Then, for all but finitely many $t = \lambda \in \mathbb{C}$,

 $\mathbf{f}_{\lambda}:\mathbb{P}^{1}
ightarrow\mathbb{P}^{1}$ is of degree d over $\mathbb{C}.$

Let $P, Q \in \mathbb{P}^1(\mathbb{C}(t))$ be given and put

 $\begin{aligned} \mathsf{PreP}_{\mathbf{f}}(P) &:= \left\{ \lambda \in \mathbb{C} \ : \ P_{\lambda} \text{ is preperiodic for } \mathbf{f}_{\lambda} \right\}. \\ \mathsf{PreP}_{\mathbf{f}}(P,Q) &:= \left\{ \lambda \in \mathbb{C} \ : \ \begin{array}{c} P_{\lambda} \text{ and } Q_{\lambda} \text{ are} \\ \text{both preperiodic for } \mathbf{f}_{t} \end{array} \right\}. \end{aligned}$

Characterize *P* and *Q* so that PreP_f(*P*, *Q*) is an infinite set

Wandering v.s. Preperiodic

Family of dynamical systems and specialization

Consider morphisms

 $\mathbf{f}:\mathbb{P}^1 o\mathbb{P}^1$ of degree $d\geq 2$ over $\mathbb{C}(t)$

t as an indeterminate over $\mathbb C$

Then, for all but finitely many $t = \lambda \in \mathbb{C}$,

 $\mathbf{f}_{\lambda}: \mathbb{P}^1 \to \mathbb{P}^1$ is of degree d over \mathbb{C} .

Let $P, Q \in \mathbb{P}^1(\mathbb{C}(t))$ be given and put

 $\begin{aligned} \mathsf{PreP}_{\mathbf{f}}(P) &:= \left\{ \lambda \in \mathbb{C} \ : \ P_{\lambda} \text{ is preperiodic for } \mathbf{f}_{\lambda} \right\}. \\ \mathsf{PreP}_{\mathbf{f}}(P,Q) &:= \left\{ \lambda \in \mathbb{C} \ : \ \begin{array}{c} P_{\lambda} \text{ and } Q_{\lambda} \text{ are} \\ \text{both preperiodic for } \mathbf{f}_{t} \end{array} \right\}. \end{aligned}$

Characterize P and Q so that $PreP_f(P, Q)$ is an infinite set.

Wandering v.s. Preperiodic

Some sufficient conditions:

Remark

There are two sufficient conditions so that there are infinitely many $t \in \mathbb{C}$ such that both P_t and Q_t are preperiodic for \mathbf{f}_t .

• *P* is preperiodic for **f** (i.e. $\mathbf{f}^m(P) = \mathbf{f}^n(P)$ for some non-negative integers *m*, *n*).

• $\varphi_1(\mathbf{f}^k(P)) = \varphi_2(\mathbf{f}^\ell(Q))$ for some rational functions $\varphi_i, i = 1, 2$ which commute with a power \mathbf{f}^m of \mathbf{f} .

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Wandering v.s. Preperiodic

Family of polynomial maps

Theorem (G.-H.-T.)

Let

$$\mathbf{f}(z) := z^d + \sum_{i=0}^{d-2} c_i(t) z^i \in \mathbb{C}[t,z]$$

Let $P, Q \in \mathbb{C}[t]$, and assume that PreP(P, Q) is infinite then there exists an $\mathbf{h} \in \mathbb{C}[t, z]$ and integers $k > 0, m, n \ge 0$ such that $\mathbf{h} \circ \mathbf{f}^k = \mathbf{f}^k \circ \mathbf{h}$ and $\mathbf{f}^n(P) = \mathbf{h}(\mathbf{f}^m(Q))$.

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Wandering v.s. Preperiodic

Multi-parameter family of polynomials

For algebraically independent variables t_1, \ldots, t_m we define

$$\begin{aligned} \mathbf{f_t}(z) &:= z^d + t_1 z^{m-1} + \dots + t_{m-1} z + t_m, \ d > m \geq 2 \\ \mathbf{t} &= (t_1, \dots, t_m) \in \mathbb{A}^m(\mathbb{C}). \end{aligned}$$

Let $c_1, \ldots, c_\ell \in \mathbb{C}$ be distinct complex numbers.

 $\mathsf{PreP}_{\mathsf{f}}(c_1,\ldots,c_\ell) := \{ \lambda \in \mathbb{A}^m(\mathbb{C}) \mid c_i \text{ is preperiodic for } \mathsf{f}_{\lambda}, i = 1,\ldots,\ell \}$

Wandering v.s. Preperiodic

Multi-parameter family of polynomials

For algebraically independent variables t_1, \ldots, t_m we define

$$\begin{aligned} \mathbf{f_t}(z) &:= z^d + t_1 z^{m-1} + \dots + t_{m-1} z + t_m, \ d > m \geq 2 \\ \mathbf{t} &= (t_1, \dots, t_m) \in \mathbb{A}^m(\mathbb{C}). \end{aligned}$$

Let $c_1, \ldots, c_\ell \in \mathbb{C}$ be distinct complex numbers.

 $\mathsf{PreP}_{\mathsf{f}}(c_1,\ldots,c_\ell) := \{ \boldsymbol{\lambda} \in \mathbb{A}^m(\mathbb{C}) \mid c_i \text{ is preperiodic for } \mathbf{f}_{\boldsymbol{\lambda}}, i = 1,\ldots,\ell \}$

Wandering v.s. Preperiodic

Multi-parameter family of polynomials

For algebraically independent variables t_1, \ldots, t_m we define

$$\begin{aligned} \mathbf{f_t}(z) &:= z^d + t_1 z^{m-1} + \dots + t_{m-1} z + t_m, \ d > m \geq 2 \\ \mathbf{t} &= (t_1, \dots, t_m) \in \mathbb{A}^m(\mathbb{C}). \end{aligned}$$

Let $c_1, \ldots, c_\ell \in \mathbb{C}$ be distinct complex numbers.

 $\mathsf{PreP}_{\mathbf{f}}(c_1,\ldots,c_\ell) := \{ \boldsymbol{\lambda} \in \mathbb{A}^m(\mathbb{C}) \mid c_i \text{ is preperiodic for } \mathbf{f}_{\boldsymbol{\lambda}}, i = 1,\ldots,\ell \}$

Question When is $PreP_f(c_1, \dots, c_\ell)$ infinite?

Wandering v.s. Preperiodic

For $1 \leq i \leq \ell$, c_i is preperiodic for $\mathbf{f_t}$ if and only if there exist $(m_i, n_i) \in \mathbb{Z}_{\geq 0} \times \mathbb{N}$ such that

 $\mathbf{f}_{\mathbf{t}}^{m_i}(c_i) = \mathbf{f}_{\mathbf{t}}^{n_i}(c_i)$

which defines a hypersurface S_{m_i,n_i} in $\mathbb{A}^m(\mathbb{C})$.

$$\mathsf{PreP}_{\mathsf{f}}(c_1,\ldots,c_\ell) = \bigcup_{(\mathbb{Z}_{\geq 0}\times\mathbb{N})^\ell} \left(\bigcap_{i=1}^\ell S_{m_i,n_i}\right).$$

• If $\ell \leq m$, then there are many $\lambda \in \mathbb{A}^m(\mathbb{C})$ such that c_1, \ldots, c_ℓ are preperiodic for f_{λ} .

・ロン ・回 と ・ ヨン ・ ヨン

Wandering v.s. Preperiodic

For $1 \leq i \leq \ell$, c_i is preperiodic for $\mathbf{f_t}$ if and only if there exist $(m_i, n_i) \in \mathbb{Z}_{\geq 0} \times \mathbb{N}$ such that

 $\mathbf{f}_{\mathbf{t}}^{m_i}(c_i) = \mathbf{f}_{\mathbf{t}}^{n_i}(c_i)$

which defines a hypersurface S_{m_i,n_i} in $\mathbb{A}^m(\mathbb{C})$.

$$\operatorname{PreP}_{\mathbf{f}}(c_1,\ldots,c_\ell) = \bigcup_{(\mathbb{Z}_{\geq 0}\times\mathbb{N})^\ell} \left(\bigcap_{i=1}^\ell S_{m_i,n_i}\right).$$

• If $\ell \leq m$, then there are many $\lambda \in \mathbb{A}^m(\mathbb{C})$ such that c_1, \ldots, c_ℓ are preperiodic for f_{λ} .

・ロン ・回 と ・ ヨン ・ ヨン

Wandering v.s. Preperiodic

For $1 \le i \le \ell$, c_i is preperiodic for $\mathbf{f_t}$ if and only if there exist $(m_i, n_i) \in \mathbb{Z}_{\ge 0} \times \mathbb{N}$ such that

$$\mathbf{f}_{\mathbf{t}}^{m_i}(c_i) = \mathbf{f}_{\mathbf{t}}^{n_i}(c_i)$$

which defines a hypersurface S_{m_i,n_i} in $\mathbb{A}^m(\mathbb{C})$.

$$\operatorname{PreP}_{\mathbf{f}}(c_1,\ldots,c_\ell) = \bigcup_{(\mathbb{Z}_{\geq 0}\times\mathbb{N})^\ell} \left(\bigcap_{i=1}^\ell S_{m_i,n_i}\right).$$

• If $\ell \leq m$, then there are many $\lambda \in \mathbb{A}^m(\mathbb{C})$ such that c_1, \ldots, c_ℓ are preperiodic for \mathbf{f}_{λ} .

・ロン ・回 と ・ヨン ・ヨン

Wandering v.s. Preperiodic

For $1 \leq i \leq \ell$, c_i is preperiodic for $\mathbf{f_t}$ if and only if there exist $(m_i, n_i) \in \mathbb{Z}_{\geq 0} \times \mathbb{N}$ such that

$$\mathbf{f}_{\mathbf{t}}^{m_i}(c_i) = \mathbf{f}_{\mathbf{t}}^{n_i}(c_i)$$

which defines a hypersurface S_{m_i,n_i} in $\mathbb{A}^m(\mathbb{C})$.

$$\mathsf{PreP}_{f}(c_{1},\ldots,c_{\ell}) = \bigcup_{(\mathbb{Z}_{\geq 0} \times \mathbb{N})^{\ell}} \left(\bigcap_{i=1}^{\ell} S_{m_{i},n_{i}} \right).$$

• If $\ell \leq m$, then there are many $\lambda \in \mathbb{A}^m(\mathbb{C})$ such that c_1, \ldots, c_ℓ are preperiodic for \mathbf{f}_{λ} .

・ロン ・回 と ・ヨン ・ヨン

Wandering v.s. Preperiodic

For $1 \leq i \leq \ell$, c_i is preperiodic for $\mathbf{f_t}$ if and only if there exist $(m_i, n_i) \in \mathbb{Z}_{\geq 0} \times \mathbb{N}$ such that

$$\mathbf{f}_{\mathbf{t}}^{m_i}(c_i) = \mathbf{f}_{\mathbf{t}}^{n_i}(c_i)$$

which defines a hypersurface S_{m_i,n_i} in $\mathbb{A}^m(\mathbb{C})$.

$$\mathsf{PreP}_{\mathbf{f}}(c_1,\ldots,c_\ell) = \bigcup_{(\mathbb{Z}_{\geq 0} \times \mathbb{N})^\ell} \left(\bigcap_{i=1}^\ell S_{m_i,n_i} \right).$$

• If $\ell \leq m$, then there are many $\lambda \in \mathbb{A}^m(\mathbb{C})$ such that c_1, \ldots, c_ℓ are preperiodic for \mathbf{f}_{λ} .

Wandering v.s. Preperiodic

Example

Consider $\mathbf{f}_{\mathbf{t}}(z) = z^d + t_1 z + t_2$ and let $c \in \mathbb{C}$ be a nonzero complex number and $\zeta \in \mu_{d-1}$ be a non-trivial (d-1)-st root of unity.

• There are infinitely many $\mathbf{t} = (t_1, 0) \in \mathbb{C}^2$ such that $0, c, \zeta c$ are preperiodic for \mathbf{f}_t . Hence, $\operatorname{PreP}_{\mathbf{f}}(0, c, \zeta c)$ is infinite.

• Our main result (see below) implies that $\operatorname{PreP}_{f}(0, c, \zeta c)$ is not Zariski dense in $\mathbb{A}^{2}(\mathbb{C}) = \mathbb{C}^{2}$.

Wandering v.s. Preperiodic

Example

Consider $\mathbf{f}_{\mathbf{t}}(z) = z^d + t_1 z + t_2$ and let $c \in \mathbb{C}$ be a nonzero complex number and $\zeta \in \mu_{d-1}$ be a non-trivial (d-1)-st root of unity.

• There are infinitely many $\mathbf{t} = (t_1, 0) \in \mathbb{C}^2$ such that $0, c, \zeta c$ are preperiodic for \mathbf{f}_t . Hence, $\text{PreP}_f(0, c, \zeta c)$ is infinite.

• Our main result (see below) implies that $\operatorname{PreP}_{\mathbf{f}}(0, c, \zeta c)$ is not Zariski dense in $\mathbb{A}^2(\mathbb{C}) = \mathbb{C}^2$.

Wandering v.s. Preperiodic

Example

Consider $\mathbf{f}_{\mathbf{t}}(z) = z^d + t_1 z + t_2$ and let $c \in \mathbb{C}$ be a nonzero complex number and $\zeta \in \mu_{d-1}$ be a non-trivial (d-1)-st root of unity.

- There are infinitely many $\mathbf{t} = (t_1, 0) \in \mathbb{C}^2$ such that $0, c, \zeta c$ are preperiodic for \mathbf{f}_t . Hence, $\text{PreP}_f(0, c, \zeta c)$ is infinite.
- Our main result (see below) implies that $\operatorname{PreP}_{\mathbf{f}}(0, c, \zeta c)$ is not Zariski dense in $\mathbb{A}^2(\mathbb{C}) = \mathbb{C}^2$.

Theorem (G.-H.-T.)

Let $c_1, c_2, c_3 \in \mathbb{C}$ be distinct complex numbers, and let $d \ge 3$ be an integer. Then the set of all pairs $(\lambda_1, \lambda_2) \in \mathbb{C}^2$ such that each c_i is preperiodic for the action of $z \mapsto z^d + \lambda_1 z + \lambda_2$ is not Zariski dense in \mathbb{C}^2 .

• A key ingredient of the proof is the following multi-parameter family but weaker version of the main theorem.

(a)

Theorem (G.-H.-T.)

Let $c_1, c_2, c_3 \in \mathbb{C}$ be distinct complex numbers, and let $d \ge 3$ be an integer. Then the set of all pairs $(\lambda_1, \lambda_2) \in \mathbb{C}^2$ such that each c_i is preperiodic for the action of $z \mapsto z^d + \lambda_1 z + \lambda_2$ is not Zariski dense in \mathbb{C}^2 .

• A key ingredient of the proof is the following multi-parameter family but weaker version of the main theorem.

Theorem (G.-H.-T.)

Let $c_1, c_2, c_3 \in \mathbb{C}$ be distinct complex numbers, and let $d \ge 3$ be an integer. Then the set of all pairs $(\lambda_1, \lambda_2) \in \mathbb{C}^2$ such that each c_i is preperiodic for the action of $z \mapsto z^d + \lambda_1 z + \lambda_2$ is not Zariski dense in \mathbb{C}^2 .

• A key ingredient of the proof is the following multi-parameter family but weaker version of the main theorem.

・ロン ・回 と ・ヨン ・ヨン

Theorem B

Theorem (G.-H.-T.)

Let K be a number field, or a function field of finite transcendence degree over $\overline{\mathbb{Q}}$, let $d > m \ge 2$ be integers, and let

$$\mathbf{f}_{\mathbf{t}}(z) := z^d + t_1 z^{m-1} + \dots + t_{m-1} z + t_m$$

Let $c_1, \ldots, c_{m+1} \in K$ be distinct elements. If $PreP(c_1, \ldots, c_{m+1})$ is Zariski dense in $\mathbb{A}^m(\overline{K})$ then the following holds: for each $\lambda \in \mathbb{A}^m(\overline{K})$, if m of the points c_1, \ldots, c_{m+1} are preperiodic under the action of \mathbf{f}_{λ} , then all (m+1) points are preperiodic under the action of \mathbf{f}_{λ} .

・ロン ・回 と ・ヨン ・ヨン

Question

(1). Consider the family $f_t(z) = z^d + t_1z + t_2$ and points $0, c, \zeta c$ $(c \neq 0, \zeta \in \mu_{d-1})$. Is the set $PreP(0, c, \zeta c) \smallsetminus \{(\lambda, 0) \mid \lambda \in \mathbb{C}\}$ finite ?

(2). Characterize $c_1, c_2, c_3 \in \mathbb{C}$ such that $\text{PreP}_f(c_1, c_2, c_3)$ is an infinite set for $f_t(z) = z^d + t_1 z + t_2$.

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Question

(1). Consider the family $f_t(z) = z^d + t_1z + t_2$ and points $0, c, \zeta c$ $(c \neq 0, \zeta \in \mu_{d-1})$. Is the set $PreP(0, c, \zeta c) \setminus \{(\lambda, 0) \mid \lambda \in \mathbb{C}\}$ finite ?

(2). Characterize $c_1, c_2, c_3 \in \mathbb{C}$ such that $\text{PreP}_f(c_1, c_2, c_3)$ is an infinite set for $f_t(z) = z^d + t_1 z + t_2$.

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Question

(1). Consider the family $f_t(z) = z^d + t_1z + t_2$ and points $0, c, \zeta c$ $(c \neq 0, \zeta \in \mu_{d-1})$. Is the set $PreP(0, c, \zeta c) \setminus \{(\lambda, 0) \mid \lambda \in \mathbb{C}\}$ finite ?

(2). Characterize $c_1, c_2, c_3 \in \mathbb{C}$ such that $\text{PreP}_f(c_1, c_2, c_3)$ is an infinite set for $f_t(z) = z^d + t_1 z + t_2$.

Question

Let $d \ge 3$ be an integer, let c_1, \ldots, c_d be distinct complex numbers, and let $\mathbf{f_t}(z) = z^d + t_1 z^{d-2} + \cdots + t_{d-1}$ be a family of degree d polynomials in normal form parametrized by $\mathbf{t} = (t_1, \ldots, t_{d-1}) \in \mathbb{A}^{d-1}(\mathbb{C})$. Is it true that the set of parameters λ such that each c_i is preperiodic under the action of the polynomial $\mathbf{f_{\lambda}}$ is not Zariski dense in \mathbb{A}^{d-1} ?

・ロン ・回 と ・ヨン ・ヨン

Thank you !

Liang-Chung Hsia Two-parameter families of polynomials

(ロ) (部) (注) (注) [