## Unlikely intersection for two-parameter families of polynomials

joint work with D. Ghioca and T. Tucker

Liang-Chung Hsia<br>Department of Mathematics<br>National Taiwan Normal University

Taipie-Xi'an Number Theory Workshop TIMS, October 14, 2015

## Outline

(1) Preliminaries
(2) Unlikely Intersection

- Family of elliptic curves
(3) Arithmetic Dynamics
- Wandering v.s. Preperiodic

4 Proof of the main results
(5) General question/conjecture

## Orbits, (pre)periodic points and wandering points

## Orbits, (pre)periodic points and wandering points

Let

$$
\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \quad \text { of degree } d \geq 2 \text { over } \mathbb{C} .
$$

Dynamical system associated to $\varphi$ is roughly the classification of

## Orbits, (pre)periodic points and wandering points

Let

$$
\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \quad \text { of degree } d \geq 2 \text { over } \mathbb{C} .
$$

Dynamical system associated to $\varphi$ is roughly the classification of points in $\mathbb{P}^{1}$ under the action of $\varphi$ via iterations $\left\{\varphi^{n} \mid n \geq 0\right\}$ Let $\alpha \in \mathbb{P}^{1}$. The (forward) orbit of $\alpha$

$$
\mathcal{O}_{\varphi}(\alpha):=\left\{\alpha, \varphi(\alpha), \varphi^{2}(\alpha), \ldots\right\}
$$

## Orbits, (pre)periodic points and wandering points

Let

$$
\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \quad \text { of degree } d \geq 2 \text { over } \mathbb{C} .
$$

Dynamical system associated to $\varphi$ is roughly the classification of points in $\mathbb{P}^{1}$ under the action of $\varphi$ via iterations $\left\{\varphi^{n} \mid n \geq 0\right\}$ Let $\alpha \in \mathbb{P}^{1}$. The (forward) orbit of $\alpha$

$$
\mathcal{O}_{\varphi}(\alpha):=\left\{\alpha, \varphi(\alpha), \varphi^{2}(\alpha), \ldots\right\}
$$

$\alpha$ is called preperiodic for $\varphi$ if $\sharp \mathcal{O}_{\varphi}(\alpha)<\infty$;

## Orbits, (pre)periodic points and wandering points

Let

$$
\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \quad \text { of degree } d \geq 2 \text { over } \mathbb{C} .
$$

Dynamical system associated to $\varphi$ is roughly the classification of points in $\mathbb{P}^{1}$ under the action of $\varphi$ via iterations $\left\{\varphi^{n} \mid n \geq 0\right\}$ Let $\alpha \in \mathbb{P}^{1}$. The (forward) orbit of $\alpha$

$$
\mathcal{O}_{\varphi}(\alpha):=\left\{\alpha, \varphi(\alpha), \varphi^{2}(\alpha), \ldots\right\}
$$

$\alpha$ is called preperiodic for $\varphi$ if $\sharp \mathcal{O}_{\varphi}(\alpha)<\infty$; wandering for $\varphi$ if $\sharp \mathcal{O}_{\varphi}(\alpha)=\infty$.

## Comparison: dynamical systems v.s. algebraic group $G$

## Comparison: dynamical systems v.s. algebraic group $G$

## Comparison: dynamical systems v.s. algebraic group $G$

 action by $\left\{\varphi^{n}\right\}$Comparison: dynamical systems v.s. algebraic group $G$ action by $\left\{\varphi^{n}\right\} \longleftrightarrow$ action by $\operatorname{End}(G)$

Comparison: dynamical systems v.s. algebraic group $G$ action by $\left\{\varphi^{n}\right\} \longleftrightarrow$ action by $\operatorname{End}(G)$ preperiodic points

Comparison: dynamical systems v.s. algebraic group $G$ action by $\left\{\varphi^{n}\right\} \longleftrightarrow$ action by End $(G)$ preperiodic points $\longleftrightarrow$ torsion points

Comparison: dynamical systems v.s. algebraic group $G$ action by $\left\{\varphi^{n}\right\} \longleftrightarrow$ action by End $(G)$ preperiodic points $\longleftrightarrow$ torsion points wandering points

Comparison: dynamical systems v.s. algebraic group $G$ action by $\left\{\varphi^{n}\right\} \longleftrightarrow$ action by End $(G)$ preperiodic points $\longleftrightarrow$ torsion points wandering points $\longleftrightarrow$ point of infinite order

Comparison: dynamical systems v.s. algebraic group $G$ action by $\left\{\varphi^{n}\right\} \longleftrightarrow$ action by End $(G)$ preperiodic points $\longleftrightarrow$ torsion points wandering points $\longleftrightarrow$ point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha)$

Comparison: dynamical systems v.s. algebraic group $G$ action by $\left\{\varphi^{n}\right\} \longleftrightarrow$ action by End $(G)$ preperiodic points $\longleftrightarrow$ torsion points wandering points $\longleftrightarrow$ point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of $G(K)$.

Comparison: dynamical systems v.s. algebraic group $G$ action by $\left\{\varphi^{n}\right\} \longleftrightarrow$ action by End $(G)$ preperiodic points $\longleftrightarrow$ torsion points wandering points $\longleftrightarrow$ point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of $G(K)$.
families of dynamical systems
parameter space

Comparison: dynamical systems v.s. algebraic group $G$ action by $\left\{\varphi^{n}\right\} \longleftrightarrow$ action by $\operatorname{End}(G)$ preperiodic points $\longleftrightarrow$ torsion points wandering points $\longleftrightarrow$ point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of $G(K)$.
families of dynamical systems $\longleftrightarrow$ families of algebraic groups
parameter space $\longleftrightarrow$ moduli curves (spaces)

Comparison: dynamical systems v.s. algebraic group $G$ action by $\left\{\varphi^{n}\right\} \longleftrightarrow$ action by End $(G)$ preperiodic points $\longleftrightarrow$ torsion points wandering points $\longleftrightarrow$ point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of $G(K)$.
families of dynamical systems $\longleftrightarrow$ families of algebraic groups parameter space

Comparison: dynamical systems v.s. algebraic group $G$ action by $\left\{\varphi^{n}\right\} \longleftrightarrow$ action by End $(G)$ preperiodic points $\longleftrightarrow$ torsion points wandering points $\longleftrightarrow$ point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of $G(K)$.
families of dynamical systems $\longleftrightarrow$ families of algebraic groups parameter space $\longleftrightarrow$ moduli curves (spaces)

Comparison: dynamical systems v.s. algebraic group $G$ action by $\left\{\varphi^{n}\right\} \longleftrightarrow$ action by $\operatorname{End}(G)$ preperiodic points $\longleftrightarrow$ torsion points wandering points $\longleftrightarrow$ point of infinite order orbit $\mathcal{O}_{\varphi}(\alpha) \longleftrightarrow$ Cyclic subgroup of $G(K)$.
families of dynamical systems $\longleftrightarrow$ families of algebraic groups parameter space $\longleftrightarrow$ moduli curves (spaces)

## Example

$f(x)=x^{d}(d \geq 2)$. Then, the set of nonzero $f$-preperiodic points are all the the roots of unity. The fields generated by the roots of unity (the cyclotomic fields) play the key roles in many arithmetic theories.

## A special case

## Theorem (Y. Ihara, S. Lang, J.-P. Serre, J. Tate, )

Let $T \subset \mathbb{C}^{2}$ be an algebraic curve. If there are infinitely many points $(x, y) \in T$ such that both $x$ and $y$ are roots of unity, then the equation of $T$ is of the form $X^{m} Y^{n}=\zeta$, where $m, n \in \mathbb{Z}$ and $\zeta \in \mu_{\infty}$ is a root of unity.

The theorem can reformulated as follows.


## A special case

## Theorem (Y. Ihara, S. Lang, J.-P. Serre, J. Tate, )

Let $T \subset \mathbb{C}^{2}$ be an algebraic curve. If there are infinitely many points $(x, y) \in T$ such that both $x$ and $y$ are roots of unity, then the equation of $T$ is of the form $X^{m} Y^{n}=\zeta$, where $m, n \in \mathbb{Z}$ and $\zeta \in \mu_{\infty}$ is a root of unity.

The theorem can reformulated as follows.

## Theorem

Let $T$ be an algebraic curve and let $F_{1}, F_{2}$ be non-zero rational functions in $\mathbb{C}(T)$ such that there are infinitely many $P \in T(\mathbb{C})$ such that both $F_{1}(P)$ and $F_{2}(P)$ are roots of unity. Then, $F_{1}$ and $F_{2}$ are multiplicative dependent, i.e. there exist $m, n \in \mathbb{Z}$ (not both equal to zero) such that $F_{1}^{m} F_{2}^{n}=1$.

There are higher dimensional analogues of this theorem (i.e. $T$ is an irreducible subvariety of torus $\mathbb{G}_{m}^{n}$ ) with "infinitely many" replaced by "Zariski dense".

There are higher dimensional analogues of this theorem (i.e. $T$ is an irreducible subvariety of torus $\mathbb{G}_{m}^{n}$ ) with "infinitely many" replaced by "Zariski dense".
Another generalization is the following theorem proved by
E. Bombieri, D. Masser and U. Zannier.

## Theorem (Bombieri-Masser-Zannier)

Let $T$ be an absolutely irreducible curve defined over $\overline{\mathbb{Q}}$ and let $x_{1}, \ldots, x_{n}$ be nonzero rational functions in $\overline{\mathbb{Q}}(T)$, multiplicaitve independent modulo constants. Then the points $P \in T(\overline{\mathbb{Q}})$ for which $x_{1}(P), \ldots, x_{n}(P)$ are multiplicative dependent, form a set of bounded height.

## Legendre family of elliptic curves

Consider the one-parameter family of elliptic curves $E_{t}$ given by the following Weierstrass equation

$$
E_{t}: y^{2}=x(x-1)(x-t), \quad \text { (the Legendre family) }
$$

and the two points

$$
P=P_{t}=(2, \sqrt{4-2 t}), \quad Q=Q_{t}=(3, \sqrt{18-6 t}) .
$$

## Legendre family of elliptic curves

Consider the one-parameter family of elliptic curves $E_{t}$ given by the following Weierstrass equation

$$
E_{t}: y^{2}=x(x-1)(x-t), \quad \text { (the Legendre family) }
$$

and the two points

$$
P=P_{t}=(2, \sqrt{4-2 t}), \quad Q=Q_{t}=(3, \sqrt{18-6 t}) .
$$

## Question

Are there infinitely many $\lambda \in \mathbb{C}$ such that both $P_{\lambda}$ and $Q_{\lambda}$ are torsion points of $E_{\lambda}$ ?

## $P$ and $Q$ are viewed as points in $E_{t}(\overline{\mathbb{C}(t)})$.

It's net hard to see that the set of nammeters $\mathcal{T}(P):=\left\{\lambda \in \mathbb{C} \mid P_{\lambda}\right.$ is a torsion of $\left.E_{\lambda}\right\}$ (and $\mathcal{T}(Q)$ respectively) is an infinite set.

## - $P$ and $Q$ are viewed as points in $E_{t}(\overline{\mathbb{C}(t)})$.



- $P$ and $Q$ are viewed as points in $E_{t}(\overline{\mathbb{C}(t)})$.
- It's not hard to see that the set of parameters $\mathcal{T}(P):=\left\{\lambda \in \mathbb{C} \mid P_{\lambda}\right.$ is a torsion of $\left.E_{\lambda}\right\}$ (and $\mathcal{T}(Q)$ respectively) is an infinite set.

- $P$ and $Q$ are viewed as points in $E_{t}(\overline{\mathbb{C}(t)})$.
- It's not hard to see that the set of parameters $\mathcal{T}(P):=\left\{\lambda \in \mathbb{C} \mid P_{\lambda}\right.$ is a torsion of $\left.E_{\lambda}\right\}$ (and $\mathcal{T}(Q)$ respectively) is an infinite set.
- On the other hand, neither $P$ nor $Q$ is a torsion point on the elliptic surface $E_{t}$ (over $\mathbb{C}(t)$ ).
- $P$ and $Q$ are viewed as points in $E_{t}(\overline{\mathbb{C}(t)})$.
- It's not hard to see that the set of parameters $\mathcal{T}(P):=\left\{\lambda \in \mathbb{C} \mid P_{\lambda}\right.$ is a torsion of $\left.E_{\lambda}\right\}$ (and $\mathcal{T}(Q)$ respectively) is an infinite set.
- On the other hand, neither $P$ nor $Q$ is a torsion point on the elliptic surface $E_{t}$ (over $\mathbb{C}(t)$ ).
- Also, the two pionts $P$ and $Q$ are independent points of $E_{t}(\overline{\mathbb{C}(t)})$.


## Masser-Zannier's result

## Theorem (Masser-Zannier)

Let $E_{t}, P_{t}$ and $Q_{t}$ be given as above. Then, the intersection $\mathcal{T}(P) \cap \mathcal{T}(Q)$ is a finite set.

More general version of this theorem was also obtained (Masser-Zannier, 2011) and a version of the case of higher dimensional base was established (Habegger, 2011)

## Masser-Zannier's result

## Theorem (Masser-Zannier)

Let $E_{t}, P_{t}$ and $Q_{t}$ be given as above. Then, the intersection $\mathcal{T}(P) \cap \mathcal{T}(Q)$ is a finite set.

More general version of this theorem was also obtained (Masser-Zannier, 2011) and a version of the case of higher dimensional base was established (Habegger, 2011).

## (One parameter) family of polynomials

## (One parameter) family of polynomials

## Theorem (Baker-DeMarco)

Let $d \geq 2$ be an integer, and fix $a, b \in \mathbb{C}$. The set of parameters $t \in \mathbb{C}$ such that both $a$ and $b$ are preperiodic for the polynomial $\operatorname{map} P_{t}(z)=z^{d}+t$ is infinite if and only if $a^{d}=b^{d}$.

## (One parameter) family of polynomials

## Theorem (Baker-DeMarco)

Let $d \geq 2$ be an integer, and fix $a, b \in \mathbb{C}$. The set of parameters $t \in \mathbb{C}$ such that both $a$ and $b$ are preperiodic for the polynomial $\operatorname{map} P_{t}(z)=z^{d}+t$ is infinite if and only if $a^{d}=b^{d}$.

- $a^{d}=b^{d} \quad \Longleftrightarrow \quad P_{t}(a)=P_{t}(b)$.

Generalizations ?

- The two points $a$ and $b$ depend on the parameter $t$
aloehrairally


## (One parameter) family of polynomials

## Theorem (Baker-DeMarco)

Let $d \geq 2$ be an integer, and fix $a, b \in \mathbb{C}$. The set of parameters $t \in \mathbb{C}$ such that both $a$ and $b$ are preperiodic for the polynomial $\operatorname{map} P_{t}(z)=z^{d}+t$ is infinite if and only if $a^{d}=b^{d}$.

- $\quad a^{d}=b^{d} \quad \Longleftrightarrow \quad P_{t}(a)=P_{t}(b)$.


## Generalizations ?

```
- The two points a and b depend on the parameter t
algebraically.
- Mare reneral family of polynomial maps.
```


## (One parameter) family of polynomials

## Theorem (Baker-DeMarco)

Let $d \geq 2$ be an integer, and fix $a, b \in \mathbb{C}$. The set of parameters $t \in \mathbb{C}$ such that both $a$ and $b$ are preperiodic for the polynomial $\operatorname{map} P_{t}(z)=z^{d}+t$ is infinite if and only if $a^{d}=b^{d}$.

- $a^{d}=b^{d} \quad \Longleftrightarrow \quad P_{t}(a)=P_{t}(b)$.


## Generalizations ?

- The two points $a$ and $b$ depend on the parameter $t$ algebraically.



## (One parameter) family of polynomials

## Theorem (Baker-DeMarco)

Let $d \geq 2$ be an integer, and fix $a, b \in \mathbb{C}$. The set of parameters $t \in \mathbb{C}$ such that both $a$ and $b$ are preperiodic for the polynomial $\operatorname{map} P_{t}(z)=z^{d}+t$ is infinite if and only if $a^{d}=b^{d}$.

- $a^{d}=b^{d} \quad \Longleftrightarrow \quad P_{t}(a)=P_{t}(b)$.


## Generalizations ?

- The two points $a$ and $b$ depend on the parameter $t$ algebraically.
- More general family of polynomial maps.


## (One parameter) family of polynomials

## Theorem (Baker-DeMarco)

Let $d \geq 2$ be an integer, and fix $a, b \in \mathbb{C}$. The set of parameters $t \in \mathbb{C}$ such that both $a$ and $b$ are preperiodic for the polynomial $\operatorname{map} P_{t}(z)=z^{d}+t$ is infinite if and only if $a^{d}=b^{d}$.

- $a^{d}=b^{d} \quad \Longleftrightarrow \quad P_{t}(a)=P_{t}(b)$.


## Generalizations ?

- The two points $a$ and $b$ depend on the parameter $t$ algebraically.
- More general family of polynomial maps.
- The case of families of rational maps.


## Family of dynamical systems and specialization

Consider morphisms

$$
\begin{aligned}
\mathbf{f}: \mathbb{P}^{1} & \rightarrow \mathbb{P}^{1} \text { of degree } d \geq 2 \text { over } \mathbb{C}(t) \\
& t \text { as an indeterminate over } \mathbb{C}
\end{aligned}
$$

## Family of dynamical systems and specialization

Consider morphisms

$$
\begin{gathered}
\mathbf{f :} \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \text { of degree } d \geq 2 \text { over } \mathbb{C}(t) \\
t \text { as an indeterminate over } \mathbb{C}
\end{gathered}
$$

Then, for all but finitely many $t=\lambda \in \mathbb{C}$,

$$
\mathbf{f}_{\lambda}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \quad \text { is of degree } d \text { over } \mathbb{C} .
$$

Let $P, Q \in \mathbb{P}^{1}(\mathbb{C}(t))$ be given and put


## Family of dynamical systems and specialization

Consider morphisms

$$
\begin{aligned}
\mathbf{f}: \mathbb{P}^{1} & \rightarrow \mathbb{P}^{1} \text { of degree } d \geq 2 \text { over } \mathbb{C}(t) \\
& t \text { as an indeterminate over } \mathbb{C}
\end{aligned}
$$

Then, for all but finitely many $t=\lambda \in \mathbb{C}$,

$$
\mathbf{f}_{\lambda}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \quad \text { is of degree } d \text { over } \mathbb{C} \text {. }
$$

Let $P, Q \in \mathbb{P}^{1}(\mathbb{C}(t))$ be given and put

$$
\begin{gathered}
\operatorname{PreP}_{\mathbf{f}}(P):=\left\{\lambda \in \mathbb{C}: P_{\lambda} \text { is preperiodic for } \mathbf{f}_{\lambda}\right\} . \\
\operatorname{PreP}_{\mathbf{f}}(P, Q):=\left\{\lambda \in \mathbb{C}: \begin{array}{c}
P_{\lambda} \text { and } Q_{\lambda} \text { are } \\
\text { both preperiodic for } \mathbf{f}_{t}
\end{array}\right\} .
\end{gathered}
$$

## Family of dynamical systems and specialization

Consider morphisms

$$
\begin{aligned}
\mathbf{f}: \mathbb{P}^{1} & \rightarrow \mathbb{P}^{1} \text { of degree } d \geq 2 \text { over } \mathbb{C}(t) \\
& t \text { as an indeterminate over } \mathbb{C}
\end{aligned}
$$

Then, for all but finitely many $t=\lambda \in \mathbb{C}$,

$$
\mathbf{f}_{\lambda}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \quad \text { is of degree } d \text { over } \mathbb{C} \text {. }
$$

Let $P, Q \in \mathbb{P}^{1}(\mathbb{C}(t))$ be given and put

$$
\begin{gathered}
\operatorname{PreP}_{\mathbf{f}}(P):=\left\{\lambda \in \mathbb{C}: P_{\lambda} \text { is preperiodic for } \mathbf{f}_{\lambda}\right\} . \\
\operatorname{PreP}_{\mathbf{f}}(P, Q):=\left\{\lambda \in \mathbb{C}: \begin{array}{c}
P_{\lambda} \text { and } Q_{\lambda} \text { are } \\
\text { both preperiodic for } \mathbf{f}_{t}
\end{array}\right\} .
\end{gathered}
$$

Characterize $P$ and $Q$ so that $\operatorname{PreP}_{\mathbf{f}}(P, Q)$ is an infinite set.

## Some sufficient conditions:

## Remark

There are two sufficient conditions so that there are infinitely many $t \in \mathbb{C}$ such that both $P_{t}$ and $Q_{t}$ are preperiodic for $\mathbf{f}_{t}$.

- $\quad P$ is preperiodic for $\mathbf{f}$ (i.e. $\mathbf{f}^{m}(P)=\mathbf{f}^{n}(P)$ for some non-negative integers $m, n$ ).
- $\varphi_{1}\left(\mathbf{f}^{k}(P)\right)=\varphi_{2}\left(\mathbf{f}^{\ell}(Q)\right)$ for some rational functions $\varphi_{i}, i=1,2$ which commute with a power $\mathbf{f}^{m}$ of $\mathbf{f}$.


## Family of polynomial maps

## Theorem (G.-H.-T.)

Let

$$
\mathbf{f}(z):=z^{d}+\sum_{i=0}^{d-2} c_{i}(t) z^{i} \in \mathbb{C}[t, z]
$$

Let $P, Q \in \mathbb{C}[t]$, and assume that $\operatorname{PreP}(P, Q)$ is infinite then there exists an $\mathbf{h} \in \mathbb{C}[t, z]$ and integers $k>0, m, n \geq 0$ such that $\mathbf{h} \circ \mathbf{f}^{k}=\mathbf{f}^{k} \circ \mathbf{h}$ and $\mathbf{f}^{n}(P)=\mathbf{h}\left(\mathbf{f}^{m}(Q)\right)$.

## Multi-parameter family of polynomials

For algebraically independent variables $t_{1}, \ldots, t_{m}$ we define

$$
\begin{aligned}
\mathbf{f}_{\mathbf{t}}(z) & :=z^{d}+t_{1} z^{m-1}+\cdots+t_{m-1} z+t_{m}, d>m \geq 2 \\
\mathbf{t} & =\left(t_{1}, \ldots, t_{m}\right) \in \mathbb{A}^{m}(\mathbb{C}) .
\end{aligned}
$$

## Multi-parameter family of polynomials

For algebraically independent variables $t_{1}, \ldots, t_{m}$ we define

$$
\begin{aligned}
\mathbf{f}_{\mathbf{t}}(z) & :=z^{d}+t_{1} z^{m-1}+\cdots+t_{m-1} z+t_{m}, d>m \geq 2 \\
\mathbf{t} & =\left(t_{1}, \ldots, t_{m}\right) \in \mathbb{A}^{m}(\mathbb{C}) .
\end{aligned}
$$

Let $c_{1}, \ldots, c_{\ell} \in \mathbb{C}$ be distinct complex numbers.
$\operatorname{PreP}_{\mathbf{f}}\left(c_{1}, \ldots, c_{\ell}\right):=\left\{\boldsymbol{\lambda} \in \mathbb{A}^{m}(\mathbb{C}) \mid c_{i}\right.$ is preperiodic for $\left.\mathbf{f}_{\boldsymbol{\lambda}}, i=1, \ldots, \ell\right\}$

## Multi-parameter family of polynomials

For algebraically independent variables $t_{1}, \ldots, t_{m}$ we define

$$
\begin{aligned}
\mathbf{f}_{\mathbf{t}}(z) & :=z^{d}+t_{1} z^{m-1}+\cdots+t_{m-1} z+t_{m}, d>m \geq 2 \\
\mathbf{t} & =\left(t_{1}, \ldots, t_{m}\right) \in \mathbb{A}^{m}(\mathbb{C})
\end{aligned}
$$

Let $c_{1}, \ldots, c_{\ell} \in \mathbb{C}$ be distinct complex numbers.
$\operatorname{PreP}_{\mathbf{f}}\left(c_{1}, \ldots, c_{\ell}\right):=\left\{\boldsymbol{\lambda} \in \mathbb{A}^{m}(\mathbb{C}) \mid c_{i}\right.$ is preperiodic for $\left.\mathbf{f}_{\boldsymbol{\lambda}}, i=1, \ldots, \ell\right\}$

## Question

When is $\operatorname{PreP}_{\mathbf{f}}\left(c_{1}, \ldots, c_{\ell}\right)$ infinite?

For $1 \leq i \leq \ell, c_{i}$ is preperiodic for $\mathbf{f}_{\mathbf{t}}$ if and only if there exist $\left(m_{i}, n_{i}\right) \in \mathbb{Z}_{\geq 0} \times \mathbb{N}$ such that

For $1 \leq i \leq \ell, c_{i}$ is preperiodic for $\mathbf{f}_{\mathbf{t}}$ if and only if there exist $\left(m_{i}, n_{i}\right) \in \mathbb{Z}_{\geq 0} \times \mathbb{N}$ such that

$$
\mathbf{f}_{\mathbf{t}}^{m_{i}}\left(c_{i}\right)=\mathbf{f}_{\mathbf{t}}^{n_{i}}\left(c_{i}\right)
$$

For $1 \leq i \leq \ell, c_{i}$ is preperiodic for $\mathbf{f}_{\mathbf{t}}$ if and only if there exist $\left(m_{i}, n_{i}\right) \in \mathbb{Z}_{\geq 0} \times \mathbb{N}$ such that

$$
\mathbf{f}_{\mathbf{t}}^{m_{i}}\left(c_{i}\right)=\mathbf{f}_{\mathbf{t}}^{n_{i}}\left(c_{i}\right)
$$

which defines a hypersurface $S_{m_{i}, n_{i}}$ in $\mathbb{A}^{m}(\mathbb{C})$.

For $1 \leq i \leq \ell, c_{i}$ is preperiodic for $\mathbf{f}_{\mathbf{t}}$ if and only if there exist $\left(m_{i}, n_{i}\right) \in \mathbb{Z}_{\geq 0} \times \mathbb{N}$ such that

$$
\mathbf{f}_{\mathbf{t}}^{m_{i}}\left(c_{i}\right)=\mathbf{f}_{\mathbf{t}}^{n_{i}}\left(c_{i}\right)
$$

which defines a hypersurface $S_{m_{i}, n_{i}}$ in $\mathbb{A}^{m}(\mathbb{C})$.

$$
\operatorname{PreP}_{\mathbf{f}}\left(c_{1}, \ldots, c_{\ell}\right)=\bigcup_{\left(\mathbb{Z}_{\geq 0} \times \mathbb{N}\right)^{\ell}}\left(\bigcap_{i=1}^{\ell} S_{m_{i}, n_{i}}\right) .
$$

For $1 \leq i \leq \ell, c_{i}$ is preperiodic for $\mathbf{f}_{\mathbf{t}}$ if and only if there exist $\left(m_{i}, n_{i}\right) \in \mathbb{Z}_{\geq 0} \times \mathbb{N}$ such that

$$
\mathbf{f}_{\mathbf{t}}^{m_{i}}\left(c_{i}\right)=\mathbf{f}_{\mathbf{t}}^{n_{i}}\left(c_{i}\right)
$$

which defines a hypersurface $S_{m_{i}, n_{i}}$ in $\mathbb{A}^{m}(\mathbb{C})$.

$$
\operatorname{PreP}_{\mathbf{f}}\left(c_{1}, \ldots, c_{\ell}\right)=\bigcup_{(\mathbb{Z} \geq 0 \times \mathbb{N})^{\ell}}\left(\bigcap_{i=1}^{\ell} S_{m_{i}, n_{i}}\right) .
$$

- If $\ell \leq m$, then there are many $\boldsymbol{\lambda} \in \mathbb{A}^{m}(\mathbb{C})$ such that $c_{1}, \ldots, c_{\ell}$ are preperiodic for $\mathbf{f}_{\boldsymbol{\lambda}}$.


## Example

Consider $\mathrm{f}_{\mathbf{t}}(z)=z^{d}+t_{1} z+t_{2}$ and let $c \in \mathbb{C}$ be a nonzero complex number and $\zeta \in \mu_{d-1}$ be a non-trivial $(d-1)$-st root of unity. preperiodic for $f_{\mathbf{t}}$. Hence, $\operatorname{PreP}_{f}(0, c, \zeta c)$ is infinite. Our main result (see below) implies that $\operatorname{PreP}_{\mathrm{f}}(0, c,(c)$ is not Zariski dense in

## Example

Consider $\mathrm{f}_{\mathbf{t}}(z)=z^{d}+t_{1} z+t_{2}$ and let $c \in \mathbb{C}$ be a nonzero complex number and $\zeta \in \mu_{d-1}$ be a non-trivial $(d-1)$-st root of unity.

- There are infinitely many $\mathbf{t}=\left(t_{1}, 0\right) \in \mathbb{C}^{2}$ such that $0, c, \zeta c$ are preperiodic for $\mathbf{f}_{\mathbf{t}}$. Hence, $\operatorname{PreP}_{\mathbf{f}}(0, c, \zeta c)$ is infinite.

Our main result (see below) implies that $\operatorname{PreP}_{f}(0, c, \zeta c)$ is not

## Example

Consider $\mathrm{f}_{\mathbf{t}}(z)=z^{d}+t_{1} z+t_{2}$ and let $c \in \mathbb{C}$ be a nonzero complex number and $\zeta \in \mu_{d-1}$ be a non-trivial $(d-1)$-st root of unity.

- There are infinitely many $\mathbf{t}=\left(t_{1}, 0\right) \in \mathbb{C}^{2}$ such that $0, c, \zeta c$ are preperiodic for $\mathbf{f}_{\mathbf{t}}$. Hence, $\operatorname{PreP}_{\mathbf{f}}(0, c, \zeta c)$ is infinite.
- Our main result (see below) implies that $\operatorname{PreP}_{f}(0, c, \zeta c)$ is not Zariski dense in $\mathbb{A}^{2}(\mathbb{C})=\mathbb{C}^{2}$.


## Theorem A

## - A key ingredient of the proof is the following multi-parameter

family but weaker version of the main theorem.

## Liang-Chung Hsia

Two-parameter families of polynomials

## Theorem A

## Theorem (G.-H.-T.)

Let $c_{1}, c_{2}, c_{3} \in \mathbb{C}$ be distinct complex numbers, and let $d \geq 3$ be an integer. Then the set of all pairs $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{C}^{2}$ such that each $c_{i}$ is preperiodic for the action of $z \mapsto z^{d}+\lambda_{1} z+\lambda_{2}$ is not Zariski dense in $\mathbb{C}^{2}$.
> - A key ingredient of the proof is the following multi-parameter family but weaker version of the main theorem

## Theorem A

## Theorem (G.-H.-T.)

Let $c_{1}, c_{2}, c_{3} \in \mathbb{C}$ be distinct complex numbers, and let $d \geq 3$ be an integer. Then the set of all pairs $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{C}^{2}$ such that each $c_{i}$ is preperiodic for the action of $z \mapsto z^{d}+\lambda_{1} z+\lambda_{2}$ is not Zariski dense in $\mathbb{C}^{2}$.

- A key ingredient of the proof is the following multi-parameter family but weaker version of the main theorem.


## Theorem B

## Theorem (G.-H.-T.)

Let $K$ be a number field, or a function field of finite transcendence degree over $\overline{\mathbb{Q}}$, let $d>m \geq 2$ be integers, and let

$$
\mathbf{f}_{\mathbf{t}}(z):=z^{d}+t_{1} z^{m-1}+\cdots+t_{m-1} z+t_{m}
$$

Let $c_{1}, \ldots, c_{m+1} \in K$ be distinct elements. If $\operatorname{PreP}\left(c_{1}, \ldots, c_{m+1}\right)$ is Zariski dense in $\mathbb{A}^{m}(\bar{K})$ then the following holds: for each $\boldsymbol{\lambda} \in \mathbb{A}^{m}(\bar{K})$, if $m$ of the points $c_{1}, \ldots, c_{m+1}$ are preperiodic under the action of $\mathbf{f}_{\lambda}$, then all $(m+1)$ points are preperiodic under the action of $\mathbf{f}_{\boldsymbol{\lambda}}$.

## Question

(1) Consider the family $f_{t}(z)$
(2). Characterize $c_{1}, c_{2}, c_{3} \in \mathbb{C}$ such that $\operatorname{Pre} \operatorname{Pf}\left(c_{1}, c_{2}, c_{3}\right)$ is an infinite set for $f_{t}(z)=z^{d}+t_{1} z+t_{2}$.

## Question

(1). Consider the family $\mathbf{f}_{\mathbf{t}}(z)=z^{d}+t_{1} z+t_{2}$ and points $0, c, \zeta c$ $\left(c \neq 0, \zeta \in \mu_{d-1}\right)$. Is the set $\operatorname{PreP}(0, c, \zeta c) \backslash\{(\lambda, 0) \mid \lambda \in \mathbb{C}\}$ finite ?

## Question

(1). Consider the family $\mathbf{f}_{\mathbf{t}}(z)=z^{d}+t_{1} z+t_{2}$ and points $0, c, \zeta c$ $\left(c \neq 0, \zeta \in \mu_{d-1}\right)$. Is the set $\operatorname{PreP}(0, c, \zeta c) \backslash\{(\lambda, 0) \mid \lambda \in \mathbb{C}\}$ finite?
(2). Characterize $c_{1}, c_{2}, c_{3} \in \mathbb{C}$ such that $\operatorname{PreP}_{f}\left(c_{1}, c_{2}, c_{3}\right)$ is an infinite set for $\mathbf{f}_{\mathbf{t}}(z)=z^{d}+t_{1} z+t_{2}$.

## Question

Let $d \geq 3$ be an integer, let $c_{1}, \ldots, c_{d}$ be distinct complex numbers, and let $\mathbf{f}_{\mathbf{t}}(z)=z^{d}+t_{1} z^{d-2}+\cdots+t_{d-1}$ be a family of degree $d$ polynomials in normal form parametrized by $\mathbf{t}=\left(t_{1}, \ldots, t_{d-1}\right) \in \mathbb{A}^{d-1}(\mathbb{C})$. Is it true that the set of parameters $\boldsymbol{\lambda}$ such that each $c_{i}$ is preperiodic under the action of the polynomial $\mathbf{f}_{\boldsymbol{\lambda}}$ is not Zariski dense in $\mathbb{A}^{d-1}$ ?

## Thank you!

