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• Nonlinear Schrödinger equation (NLS)

iqt + qxx ± 2|q|2q = 0 (1)

has received a wide study since the appearance of the work by Za-

kharov and Shabat (1972). NLS is a completely integrable system.

It plays an important role in a wide range of physical subjects such

as water waves, nonlinear optics, and plasma physics.

• Herbst and Ablowitz (PRL, 1989) investigated the discretizations
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of NLS ( under the periodic boundary conditions: qn+N = qn)

iqn,t +
qn+1 + qn−1 − 2qn

h2
+ |qn|2(qn+1 + qn−1) = 0, (2)

iqn,t +
qn+1 + qn−1 − 2qn

h2
+ 2|qn|2qn = 0. (3)

It has been shown that the difference between two discrete schemes

is only in the discretization of the nonlinear term, yet they have

very different properties. The scheme (2) is integrable. This system

has been demonstrated to be solvable by IST, and there is an in-

finite number of conserved quantities. Computations showed that

the scheme (2) provides an excellent numerical scheme. However,

the scheme (3) is nonintegrable. It produces chaotic solution for

3



intermediate levels of mesh refinement. But chaos disappears when

the discretization is fine enough and convergence to a quasiperiodic

solution is obtained.
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• In this talk, we will address the spatial properties and numeri-

cal approximations of stationary and travelling solitary waves for a

nonintegrable discrete NLS equation with nonlinear hopping:

iqn,t + qn+1 + qn−1 − 2qn + f (qn−1, qn, qn+1) = 0, (4)

where

f (qn−1, qn, qn+1) = µ|qn|2(qn+1 + qn−1) + αqn(q̄n+1qn−1 + qn+1q̄n−1)

+βq2n(q̄n+1 + q̄n−1)− 2γ|qn|2qn,

the parameters µ, α, β, γ are real and µ + α + β − γ > 0 or µ +

α+ β − γ < 0 corresponds to the focusing case or defocusing case,

respectively.
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1. A recall on nonintegrable discrete NLS equations

• Christodoulides and Joseph (1988, Opt. Lett) investigated a dis-

crete self-focusing in nonlinear array of coupled waveguides. By

using the formalism of coupled-mode theory and by considering on-

ly nearest-neighbor interaction, they showed that the electric field

propagating in the nth waveguide obeys:

i
∂En
∂z

+ βEn + c(En+1 + En−1)

+µEn(|En+1|2 + |En−1|2) + λ|En|2En = 0, (5)

where the nonlinear term λ|En|2En describes the self-phase modu-

lation that takes place in the nth waveguide, and the term µEn(|En+1|2+
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|En−1|2) aries from the nonlinear overlap of the adjacent modes. In

the real physics, the self-phase-modulation term dominates the non-

linear process, e.g., λ >> µ. So they set µ = 0, and discussed the

nonintergable discrete NLS:

i
∂En
∂z

+ c(En+1 + En−1 − 2En) + λ|En|2En = 0. (6)

This model is also proposed by Davydov (1973) in biophysics for

explain some of the fundamental questions, such as transfer, stor-

age, and movement of vibrational energy in polypeptides.

• Herbst and Ablowitz (PRL, 1989) numerically studied noninte-
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grable discrete NLS

i
dqn
dt

+
qn+1 + qn−1 − 2qn

h2
+ γ|qn|2qn = 0 (7)

with a periodic boundary condition qn+N = qn. The Hamiltonian

structure of the scheme is given by the Hamiltonian

H =
∑
n∈Z

(
|qn+1 − qn|2

h2
− γ

2
|qn|4) (8)

The scheme conserves the norm

N =
∑
n∈Z

|qn|2 (9)

The norm has a clear physical meaning being proportional to the

total light power in the case of coupled optical waveguides or the
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number of particles in a BEC. The discrete scheme produces chaotic

solutions. However, chaos disappears when the discretization is fine

enough and convergence to a quasiperiodic solution is obtained.

• A nonintegrable discrete NLS equation

iqn,t + qn+1 + qn−1 − 2qn

+µ|qn|2(qn+1 + qn−1)− γ|qn|2qn = 0, γ ̸= 0 (10)

was discussed by Cai, Bishop and Gronbech-Jensen (PRL, 1994).

• For the stationary discrete NLS

ϕn+1 =
E + γ|ϕn|2

1 + µ|ϕn|2
ϕn − ϕn−1. (11)

Dynamics including stability, solutions, wave transmission, and period-
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doubling bifurcation for the discrete map are investigated (Hennig,

Sun, Gabriel, Tsironis, Phys Rev E, 1995).

• By using discrete Fourier transformation, Ablowitz and Mussli-

mani (Phys Rev E, 2002) investigated stationary and traveling soli-

tary wave of dNLS

i
∂qn
∂z

+
qn+1 + qn−1 − 2qn

h2
+ |qn|2qn = 0. (12)

• As we known, for dNLS, since both the translational and Gallileo
invariances are broken, existence of a stationary solution

un(t) = ϕ(hn)eiωt
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does not guarantee existence of a travelling solution

un(t) = ϕ(hn− 2ct)eiωt

Pelinovsky (Nonlinearity, 2006) derived a general four-parameter

family of translationally invariant NLS lattice characterized by

i
dun
dt

+
un+1 − 2un + un−1

h2
+ f (un−1, un, un+1) = 0, (13)

where f (un−1, un, un+1) is represented by the four-parameter fam-
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ily of cubic polynomials,

f = (1− χ− 4ξ − 2η)|un|2(un+1 + un−1) + χu2n(ūn+1 + ūn−1)

+ξ[(2|un|2 + |un+1|2 + |un−1|2)un + (ūn+1un−1 + un+1ūn−1)un

+(u2n+1 + u2n−1)ūn]

+η(u2n+1 + u2n−1)(un+1 + un−1) + ν[u2n+1ūn−1 + u2n−1ūn+1

−|un+1|2un−1 − |un−1|2un+1]

Remark Direct substitutions of the stationary solution and trav-

elling solution to the discrete NLS show that ϕn = ϕ(hn) satisfies
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the second-order difference eq,

ϕn+1 − 2ϕn + ϕn−1

h2
− ωϕn + f (ϕn−1, ϕn, ϕn+1) = 0,

while the function ϕ(z) = ϕ(hn − 2ct) satisfies the differential

advance-delay eq,

2ic
dϕ(z)

dz
=
ϕ(z + h)− 2ϕ(z) + ϕ(z − h)

h2

−ωϕ(z) + f (ϕ(z − h), ϕ(z), ϕ(z + h)).

The stationary solution of the second-order difference eq is said to

be translationally invariant if the function ϕn can be extended to

a one-parameter family of continuous solutions ϕ(z − s) on z ∈ R

of the differential advance-delay eq with c = 0. It has been shown
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that the discrete NLS lattice conserves the momentum M invariant,

M = i
∑
n∈Z

(ūn+1un − un+1ūn)

has no Hamiltonian structure, and may possess the power N invari-

ant,

N =
∑
n∈Z

(|un|2 + ūn+1un + un+1ūn)

if ν = 0 and

(a)χ = ξ = 0, (b)χ = 0, ξ =
1

4
− η,

(c)ξ = η = 0, (d)η = 0, χ =
1

2
− 2ξ

15



2. Spatial properties of nonintegrable discrete NLS (4)

In this talk, by using the planar nonlinear dynamical map approach,

we will address spatial properties of nonintegrable discrete NLS (4).

By using discrete Fourier transformation method, we will obtain

numerical approximations of stationary and travelling solitary wave

solutions for the nonintegrable discrete NLS equation.

We will emphasize that nonintegrable dNLS equation (4) can not

be obtained by the reduction of nonintegrable dNLS equation (13)

with (14), and the properties of equation (4) differ from the ones

of equation (13), e.g., equation (4) has no conserved momentumM
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and conserved power N .

(2.1) A planar nonlinear dynamical map related to

nonintegrable discrete NLS (4)

Set qn(t) = φne
i(F−2)t, eq. (4) is converted into the stationary

dNLS equation:

−Fφn + (1 + µ|φn|2)(φn+1 + φn−1)− 2γ|φn|2φn
+α(φ̄n+1φn−1 + φn+1φ̄n−1)φn + βφ2n(φ̄n+1 + φ̄n−1) = 0.(14)
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Let φn = rne
iθn, we rewrite equation (14) as

rn+1 cos(∆θn+1) + rn−1 cos(∆θn) =

(F + 2γr2n)rn − 2αrn+1rnrn−1 cos(∆θn+1 +∆θn)

1 + (µ + β)r2n
, (15)

and

rn+1 sin(∆θn+1)− rn−1 sin(∆θn) = 0, (16)

where ∆θn = θn − θn−1. Eq.(16) implies a conserved quantity:

J = rnrn−1 sin(∆θn). (17)
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Through introducing real-valued variables transformations:
xn = φ̄nφn−1 + φnφ̄n−1 = 2rnrn−1 cos(∆θn),

yn = i[φ̄nφn−1 − φnφ̄n−1] = 2J,

zn = |φn|2 − |φn−1|2 = r2n − r2n−1,

(18)

equations (15) and (16) yield a plane map Mα,β,γ,F,J

Mα,β,γ,F,J :


xn+1 =

(F+γ(ωn+zn))(ωn+zn)+4αJ
2−xn

(
1+µ+β2 (ωn+zn)

)
1+µ+β2 (ωn+zn)+αxn

,

zn+1 =
x2n+1−x

2
n

2(ωn+zn)
− zn,

(19)

with ωn =
√
x2n + z2n + 4J2.
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(2.2) Exact period orbits of the map (19)

Case 1: J = 0

Considering the peculiar orbit with zn = 0,∀n, we obtain xn+1 =
±xn, ∀n. This means that the period-1 orbit and the period-2 orbit

to the map (19) are constructed. The period-1 orbit is the fixed

point of the two-dimensional real map (19),

x = x0 =
F − 2

µ + α + β − γ
> 0, z = 0, (20)

or

x = x0 =
F + 2

µ + β + γ − α
< 0, z = 0. (21)
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The period-2 orbit is

x = x0 =
−F
α + γ

> 0, z = 0, (22)

or

x = x0 =
F

α + γ
< 0, z = 0, (23)

which creates period-doubling bifurcation for the map (19).

Case 2: J ̸= 0

We introduce the following scaling transformation: xn = 2Jx̃n, zn =

2Jz̃n, Jγ = γ̃ and ωn = 2Jω̃n, then the new variable map is rewrit-
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ten as,

Mα,β,γ̃,F,J :


x̃n+1 =

(F+2γ̃(ω̃n+z̃n))(ω̃n+z̃n)+2αJ−x̃n(1+J(µ+β)(ω̃n+z̃n))
1+J(µ+β)(ω̃n+z̃n)+2αJx̃n

,

z̃n+1 =
x̃2n+1−x̃

2
n

2(ω̃n+z̃n)
− z̃n,

(24)

with ω̃n =
√
x̃2n + z̃2n + 1 as J > 0, or ω̃n = −

√
x̃2n + z̃2n + 1 as

J < 0.

Set z̃n = 0, ∀n, we get x̃n+1 = x̃n, i.e., x̃n is the period-1 orbit,

and x̃n+1 = −x̃n, i.e. x̃n is the period-2 orbit. The period-1 orbit
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is determined by

2J(γ−α)x2− 2x− 2J(µ+β)xω+Fω+2J(α+γ) = 0, z = 0

(25)

where ω = ±
√
1 + x2. Considering a special case α + γ = 0 and

F = 0, we have

2αJx± J(µ + β)
√

1 + x2 + 1 = 0, z = 0.

When sgn(2αJx + 1) = sgn(±J(µ + β)
√
1 + x2) and

1 + J2
(
4α2 − (µ + β)2

)
≥ 0, the exact period-1 orbit solution is
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given by

x = x̃0 =
−2α± (µ + β)

√
1 + J2

(
4α2 − (µ + β)2

)
J
(
4α2 − (µ + β)2

) , z = 0

(26)

When −F
J(α+γ)

> 0, and |F | > 2|J(α + γ)|, the period-2 orbits are

x = x̃0 =

√
F 2

4J2(α + γ)2
− 1, z = 0. (27)

or

x = x̃0 = −

√
F 2

4J2(α + γ)2
− 1, z = 0. (28)
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2.3 Stability of orbits of the plane map

The stability of an orbit of period l of a plane map M has been

discussed (Greene, 1968; Hennig, Sun, Gabriel, Tsironis, 1995; Hen-

ning, Rasmussen, Gabriel, Bülow, 1996, 1997). Suppose the plane

map M has the general form

x1 = f (x0, z0), z1 = g(x0, z0). (29)

Stability of an orbit of period l around a fixed point (x∗, z∗) of the

map M is determined by its residue

ρ =
1

4

(
2− Tr(Πlj=1DM

(j)(x∗, z∗))
)
, (30)

where DM(x∗, z∗) is the tangent map of M at (x∗, z∗) defined by
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∂(f,g)
∂(x,z)

|(x∗,z∗). The periodic orbit is stable when 0 < ρ < 1 (elliptic)

and unstable when ρ > 1 (hyperbolic) or ρ < 0 (hyperbolic).

Case 1: J = 0

For the fixed point (20), the residue is

ρ =
(F − 2)(α + β + µ− γ)

F (2α + β + µ)− 2(α + γ)
. (31)

So the stability properties of the fixed point (20) are

(i)0 < ρ < 1(elliptic),F (2α + β + µ) > 2(α + γ) and F (α + γ) +

2(β + µ− 2γ) > 0;

(ii)ρ > 1(hyperbolic), F (2α + β + µ) > 2(α + γ) and F (α + γ) +

2(β + µ− 2γ) < 0;
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(iii)ρ < 0(hyperbolic),F (2α + β + µ) < 2(α + γ).

• In case (i) the fixed point (20) is a stable elliptic point encircled

by stable elliptic type map orbits. (e.g., F > 2 and 0 < α + γ <

2α + β + µ, the residue satisfies 0 < ρ < 1).

The fig.1 (a) describes the orbits around the stable elliptic point

where the parameters are F = 4, α = µ = 1, β = γ = 0.5 and

initial value (x1, z1) = (j, 0)(0.1 ≤ j ≤ 1.5) with an interval 0.1.

The fixed point is (x∗, z∗) = (1, 0) and ρ = 4
11.

• In the cases (ii) and (iii), fixed point (x∗, 0) becomes an un-

stable hyperbolic point. In the particular conditions F < 2 and
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0 < 2α+β+µ < α+ γ, we have ρ < 0. The unstable orbits relat-

ed to the hyperbolic point (x∗, z∗) = (1, 0) are shown in fig.1 (b)

for parameters F = 1.7, α = 1, β = −2, γ = 0.3, µ = 1 and initial

value (x1, z1) = (j, 0)(0.1 ≤ j ≤ 1) with interval 0.06, and fig.1 (c)

where initial value (x1, z1) = (j, 0)(1.05 ≤ j ≤ 1.5) with interval

0.06. The fig. 1(e) describes the unstable orbits in the neighbor-

hood of the hyperbolic point (x∗, 0) = (1.125, 0), where we choose

parameters F = 0.2, α = −2, β = 0.2, γ = 0.3, µ = 0.5 such that

the residue ρ > 1, and initial values (x1, z1) = (j, 0)(0 ≤ j ≤ 1.2)

with interval 0.03.
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The residue for the fixed point (21) is

ρ =
(F + 2)(α− β − µ− γ)

F (2α− β − µ) + 2(α + γ)
. (32)

So the stability properties of the fixed point (21) are

(i)0 < ρ < 1(elliptic), F (2α − β − µ) + 2(α + γ) > 0, andF (α +

γ) + 2(β + µ + 2γ) > 0;

(ii)ρ > 1 (hyperbolic), F (2α − β − µ) + 2(α + γ) > 0, and

F (α + γ) + 2(β + µ + 2γ) < 0;

(iii)ρ < 0(hyperbolic), F (2α− β − µ) + 2(α + γ) < 0.

In the following particular conditions:
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Figure 1: Map orbits related to (a): the stable elliptic point (x, z) = (1, 0). Parameters: F = 4, α = µ = 1, β = γ = 0.5 and initial value (x1, z1) =

(j, 0)(0.1 ≤ j ≤ 1.5) with an interval 0.1. Chaotic behavior appears at (x1, z1) = (0.1, 0). (b): the hyperbolic point (x, z) = (1, 0) when the parameters

F = 1.7, α = 1, β = −2, γ = 0.3, µ = 1 and initial value (x1, z1) = (j, 0)(0.1 ≤ j ≤ 1) with interval 0.06. (c:) initial value (x1, z1) = (j, 0)(1.05 ≤ j ≤ 1.5) with

interval 0.06. (d): the local of (c). (e): the hyperbolic point (x, z) = (1.125, 0) where F = 0.2, α = −2, β = 0.2, γ = 0.3, µ = 0.5 and (x1, z1) = (j, 0)(0 ≤ j ≤ 1.2)

with interval 0.025.
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(i) When F < −2 and 2α−β−µ < α+γ < 0, e.g., F = −3, α =

1, β = 3, γ = −2 and µ = 1, we obtain the residue ρ = 0.25 and

the stable elliptic point (x∗, 0) = (−1, 0). The orbits of the map

emerging chaotic property are shown in fig.2.

(ii) F > −2 and α + γ < 2α− β − µ < 0, ρ < 0 (hyperbolic).
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Figure 2: Map orbits related to the stable elliptic point (x, z) = (−1, 0). Parameters: F = −3, α = 1, β = 3, γ = −2, µ = 1 and initial value (x1, z1) =

(j, 0)(−2.6 ≤ j ≤ −1) with an interval 0.05. The chaotic layer is clearly shown. (b): initial value (x1, z1) = (j, 0)(−1 ≤ j ≤ 0.1) with an interval 0.05.

Case 2: J ̸= 0

Set ∆ =

√
4α2J2 + 2αJω(F + 2γ̃ω) + (1 + Jω(µ + β))2. The
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residue corresponding to (25) is given by

ρ =
1

8

(
6 +

c1ω
4 + c2ω

3 + c3ω
2 + c4ω + c5

αJω∆3

)
, (33)
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where

c1 =2J
4(α + γ)(β + µ)

(
4αγ + (β + µ)2

)
,

c2 =FJ
3(β + µ)3 + 2J3 (3α + γ(3−∆)) (β + µ)2 + 4FJ3α(α + 2γ)(β + µ)

− 4Jα
(
3γ2∆+ 2Jαγ̃(1 + ∆) + J2α2(2 + ∆)

)
,

c3 =2J
2
(
F 2α +

(
3 + 4J2α2

)
(α + γ)− 2γ∆

)
(β + µ)

− JF
(
8αγ̃∆+ J

(
4α2 + (∆− 3)(β + µ)2

))
, (34)

c4 =2γ̃(1−∆) + 8J2α2γ̃(1 + ∆) + 4J3α2(α(2 + 4∆) + F (β + µ))

+ J
(
α
(
2− F 2∆

)
+ F (3− 2∆)(β + µ)

)
, (35)

c5 =F
(
1−∆+ 4J2α2(1 + ∆)

)
.
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For special case α + γ = 0 and F = 0, the residues for 1-period

orbit (26) are ρ = 1.

This means that we can not determine the stability of the orbit

around the fixed point.
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(2.4) Numerical simulation of orbits of the map (24)

In the general case zn ̸= 0, we can not obtain exact orbit for map

(24). Here we give a numerical simulation for the orbits of the map.

In each figure, the space lattice site n takes the value from 1 to

1000, and the x and z axes denote the values of x̃n and z̃n(n =

1, 2, ..., 1000) of the map (24), respectively. In figs.3-7, we display

that how the parameters α, β and γ affect the orbits of the map.

36



−5 0 5 10 15 20

−10

−5

0

5

10

x

z

(a) α = β = 0

−5 0 5 10 15 20
−10

−5

0

5

10

x

z

(b) α = −0.3, β = 0.3

−10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

x

z

(c) α = −0.5, β = 0.5

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

8

x

z

(d) α = −2.5, β = 2.5

Figure 3: Constraint condition µ + α + β − γ = 1 (fousing case). γ = γ̃/J . Orbits of the map M (24) with the parameters γ̃ = 0.2, F = 1.0, J = 0.25, µ = 1.8.

(a) regular regime for the nonintegrable discrete NLS: α = β = 0; (b-d) α < 0, the orbits disappear or evolve into chaotic as the parameter |α| = |β| get larger.

Initial value (x1, z1) = (j, 0)(1 ≤ j ≤ 20) with an interval of 1.
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Figure 4: Constraint condition µ + α + β − γ = 1 (fousing case). γ = γ̃/J . Orbits of the map M (24) with the parameters γ̃ = 0.2, F = 1.0, J = 0.25, µ = 1.8.

(a-c) α > 0, the orbits disappear or evolve into chaotic as the parameter |α| = |β| get larger. Initial value (x1, z1) = (j, 0)(1 ≤ j ≤ 20) with an interval of 1.
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Figure 5: Constraint condition µ+ α+ β − γ = 1 (fousing case). γ = γ̃/J . Effect of F on orbits of the map M (24) with the parameters γ̃ = 0.2, J = 0.25, µ =

1.8, α = −β = −0.3. Initial value (x1, z1) = (j, 0)(1 ≤ j ≤ 20) with an interval of 1.

(2.5) Exact spatial period solutions of nonintegrable

dNLS equation

For the probability current J = 0, the period-1 orbit (20) yields a

period-1 solution to the nonintegrable dNLS equation, i.e., qn(t) =√
x0
2 e

i[(F−2)t+θ0], where θ0 is the argument of φ0. However, for
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Figure 6: Orbits of the map M (24). (a): focsing case: F = 0.4, γ̃ = −α = 0.2, J = µ = 1, β = 1.5. Initial value (x1, z1) = (j, 0)(−2 ≤ j ≤ 8) with an

interval of 0.3. µ + α + β − γ = 2.1. (b): F = −1.3, γ̃ = −α = 0.2, J = 0.4, µ = 1.2, β = −2. Initial value (x1, z1) = (j,−1)(0 ≤ j ≤ 5) with an interval of 0.3.

µ+ α+ β − γ = −1.5.
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Figure 7: Orbits of the map M with the parameters F = 0.5, J = 0.1, γ̃ = 0.2 and (x1, z1) = (j, 0)(−2 ≤ j ≤ 8) with an interval of 0.2. (a) there are chaotic sea;

(b-c) the effect of the parameter α on chaotic sea.

another period-1 orbit (21), its corresponding solution is a period-2

solution, 
q0(t) =

√
−x0
2 ei[(F−2)t+θ0],

q1(t) = −
√

−x0
2 ei[(F−2)t+θ0],

qn+2(t) = qn(t) ∀n,

(36)
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where x0 =
F+2

µ−α+β+γ < 0.

The period-2 orbit(22) gives the following period-4 solution to the

nonintegrable dNLS equation
q0(t) = q3(t) =

√
x0
2 e

i[(F−2)t+θ0],

q1(t) = q2(t) = −
√
x0
2 e

i[(F−2)t+θ0],

qn+4(t) = qn(t) ∀n,

(37)

where x0 = −F
α+γ > 0. But, for another period-2 orbit, it can not

yield the corresponding solution to nonintegrable dNLS equation.

For J ̸= 0, when period-1 orbit x = x̃0 > 0, the generating solution

qn(t) = rei[(F−2)t+θ0+n arcsin(J/r
2)] to the nonintegrable dNLS e-
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quation is given by the period-1 orbit (25), where r admits the

constraint condition: J2(1 + x̃20) = r4. It is not period in general.

But when arcsin J
r2

= 2π
m , ∀m ∈ Z+ and m > 3, it is a period-

m solution. For the period-2 orbit (27), its yielding solution is a

period-4 solution

qn(t) = re
i

(
(F−2)t−[n2 ]π+

1+(−1)n+1

2 arcsin J
r2

)
. (38)

Like the case of J = 0, in the case of J ̸= 0, another period-2 orbit

can not yield the corresponding solution to nonintegrable dNLS e-

quation.
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Remark 1: The periodicity of the orbits of the plane map does

not coincide with the space periodicity of the solution. This is an

interesting phenomenon for the nonintegrable dNLS equation (4).

Remark 2: The numerical simulations for the orbit of stationary

dNLS equation (24) are given. However, the corresponding solu-

tions of the nonintegrable dNLS equation (4) are still not clear.
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3. Numerical approximations of stationary and trav-

elling solitary waves of nonintegrable discrete NLS (4)

By using the discrete Fourier analysis approach ( Ablowitz and Mus-

slimani, Phys. Rev. E, 2002), we will obtain numerical approxima-

tions of discrete stationary and traveling solitary wave solutions for

nonintegrable dNLS equation (4) with the form

iqn,z + (1 + |qn|2)(qn+1 + qn−1)− 2qn

+αqn(q̄n+1qn−1 + qn+1q̄n−1) + βq2n(q̄n+1 + q̄n−1)− γ|qn|2qn = 0.

(39)
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The key point of the method is to transform a differential advance-

delay equation into an integral equation which can be solved by

using numerical method.

Set

qn(z) = u(ξ)e−iψn, (40)

where ξ = nh− vz, ψn = δnh−ωz and u(ξ) = F (ξ)+ iG(ξ) with

v and ω being the soliton velocity and wave-number shift, and h
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being the lattice spacing. Then eq. (39) can be written as

vG
′
− 2F +

(
1 + F 2 +G2 + β(F 2 −G2)

)
(D1F +D2G)− γ(F 2 +G2)F

+ 2βFG(D1G−D2F ) + 2αF [((E+F )(E−F ) + (E+G)(E−G)) cos(2δh)

+ ((E+G)(E−F )− (E+F )(E−G)) sin(2δh)] = ωF,

− vF
′
− 2G +

(
1 + F 2 +G2 − β(F 2 −G2)

)
(D1G−D2F )

− γ(F 2 +G2)G + 2βFG(D1F +D2G)

+ 2αG[((E+F )(E−F ) + (E+G)(E−G)) cos(2δh) (41)

+ ((E+G)(E−F )− (E+F )(E−G)) sin(2δh)] = ωG,
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where

D1H = cos(δh)(E+ + E−)H, D2G = sin(δh)(E+ − E−)G.

with E±X(ξ) = X(ξ ± h).

Eq. (41) is a nonlinear differential advance-delay system. It is d-

ifficult to find a solution to this system. To find its solution, we

employ the discrete Fourier transformation method:

F̂(q) =
+∞∑

n=−∞
F(nh)e−iqnh,

F(nh) =
h

2π

∫ π/h

−π/h
F̂(q)eiqnhdq. (42)
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• Remarks: (1) As h → 0, the discrete Fourier transform ⇒ con-

tinuous Fourier transform.

(2) The discrete Fourier transform possesses the same properties of

continuous Fourier transform, e.g.,

F [f ′(x)] = −iqF [f (x)]

F [f1f2] =
h

2π
F [f1] ∗ F [f2]

Eq. (41) can be regarded as a nonlinear integral equation:

F̂ (q) =
Ω1(q)Q1[F̂ ,G̃](q)+Ω2(q)Q2[F̂ ,G̃](q)

Ω2
1(q)−Ω2

2(q)
,

G̃(q) =
Ω1(q)Q2[F̂ ,G̃](q)+Ω2(q)Q1[F̂ ,G̃](q)

Ω2
1(q)−Ω2

2(q)
, (43)
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where G̃(q) = iĜ(q), Ω1(q) = ω + 2(1− cos(hq) cos(δh)), Ω2(q) =
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qV + 2 sin(hq) sin(δh) and

Q1[F̂ , G̃](q) =
−γh2

4π2
(F̂ ∗ F̂ ∗ F̂ − F̂ ∗ G̃ ∗ G̃)(q)

+ cos(δh)

(
(1 + β)h2

2π2
F̂ ∗ F̂ ∗ F̂A − (1− β)h2

2π2
G̃ ∗ G̃ ∗ F̂A

−βh
2

π2
F̂ ∗ G̃ ∗ G̃A

)
(q) + sin(δh)

(
(1 + β)h2

2π2
F̂ ∗ F̂ ∗ G̃B−

(1− β)h2

2π2
G̃ ∗ G̃ ∗ G̃B − βh2

π2
F̂ ∗ G̃ ∗ F̂B

)
(q)

+
αh2

2π2

(
cos (2δh)(F̂ ∗Q0[F̂ , G̃])

+2 sin(2δh)(F̂ ∗ F̂1 ∗ G̃B − F̂ ∗ F̂B ∗ G̃A)
)
(q),

51



Q2[F̂ , G̃](q) =
−γh2

4π2
(F̂ ∗ F̂ ∗ G̃− G̃ ∗ G̃ ∗ G̃)(q)

+ cos(δh)

(
(1− β)h2

2π2
F̂ ∗ F̂ ∗ G̃A − (1 + β)h2

2π2
G̃ ∗ G̃ ∗ G̃A

+
βh2

π2
F̂ ∗ G̃ ∗ F̂A

)
(q) + sin(δh)

(
(1− β)h2

2π2
F̂ ∗ F̂ ∗ F̂B−

(1 + β)h2

2π2
G̃ ∗ G̃ ∗ F̂B +

βh2

π2
F̂ ∗ G̃ ∗ G̃B

)
(q) +

αh2

2π2
×(

cos (2δh)(G̃ ∗Q0[F̂ , G̃]) + 2 sin(2δh)(G̃ ∗ F̂A ∗ G̃B − G̃ ∗ F̂B ∗ G̃A)
)
(q),

whereQ0[F̂ , G̃](q) = (F̂A∗F̂A+F̂B∗F̂B−G̃A∗G̃A−G̃B∗G̃B)(q),
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and

(L̂ ∗ M̂ ∗ N̂ )(q) =

∫∫
dq1dq2L̂(q1)M̂(q2)N̂ (q − q1 − q2),

F̂A(q) = F̂ (q) cos(qh), F̂B(q) = F̂ (q) sin(qh), G̃A(q) = G̃(q) cos(qh),

G̃B(q) = G̃(q) sin(qh).

Case 1: stationary solitary wave. To obtain the stationary

solitary wave, we set V = δ = 0, ω = ωs, and G = 0. Then

the equation (41) can be reduced to the following nonlinear integral

equation:

F̂ (q) = h2

4π2Ω(q)
[−γ(F̂ ∗ F̂ ∗ F̂ ) + 2(1 + β)F̂ ∗ F̂ ∗ F̂A

+2α(F̂ ∗ F̂A ∗ F̂A + F̂ ∗ F̂B ∗ F̂B)](q) , Kωs[F̂ (q)], (44)
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where Ω(q) = ωs + 2(1 − cos(qh)) is the frequency of the linear

excitations.

Using a modified Neumann iteration scheme (Ablowitz and Biondi-

ni (Opt. Lett., 1998) and Ablowitz and Musslimani(PRE, 2002)),

we construct function sequences F̂n(q)n>0 defined by the following

scheme:

F̂n+1(q) =

∣∣∣∣∣θ(F̂n)υ(F̂n)

∣∣∣∣∣
3/2

Kωs[F̂n(q)], n > 0,

θ(F̂n) =

∫
F̂ 2
n(q)dq; υ(F̂n) =

∫
F̂n(q)Kωs[F̂n(q)]dq.

(45)

As pointed out by Ablowitz and Musslimani (PRE, 2002), the factor
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∣∣∣∣θ(F̂n)υ(F̂n)

∣∣∣∣l with 1 < l < 2 is introduced to stabilize the iteration

scheme. Numerical simulation shows that by choosing the proper

values for the parameters, then as n→ ∞
θ(F̂n(q))

υ(F̂n(q))
→ 1

and function sequences F̂n(q) is convergent. We set F̂n(q) → F̂s(q)

as n → ∞. Then F̂s(q) is a fixed point of nonlinear integrable

equation (44), and its Fourier inverse transformation F(nh) is a

approximate solution of Eq. (41).

Lets us give an example for the case of the following parameters
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and initial F̂0(q):

α = −1, β = γ = ω = 1, h = 0.5,

F̂0(q) = sech(q).

The result of the numerical simulation is given by the following

table:
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n |θ(F̂n)/v(F̂n)| ∥F̂n − F̂s∥L2
0 7.870361352 2.259431239

1 0.8654676779 0.5487189637

2 0.9573303456 0.1967737254

3 0.9866193377 0.07361655644

4 0.9954382285 0.02676535105

5 0.9982811553 0.007859929333

6 0.9993098242 /

57



Fig. 8 gives the soliton mode and describes the effect of the pa-

rameters α, β, γ, ω on soliton shape. It is interesting to note that

the solitary wave has two equivalent wave peaks when α = 10 in

fig. 8 (a).
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Case 2: traveling solitary wave.

To derive the traveling solitary wave of the dNLS equation, we

employ the following modified Neumann iteration form for equation

(43):

F̂n+1(q) =

∣∣∣∣∣θ1(F̂n, G̃n)δ1(F̂n, G̃n)

∣∣∣∣∣
3/2

Ω1(q)Q1[F̂n, G̃n](q) + Ω2(q)Q2[F̂n, G̃n](q)

Ω2
1(q)− Ω2

2(q)
,

G̃n+1(q) =

∣∣∣∣∣θ1(F̂n, G̃n)δ1(F̂n, G̃n)

∣∣∣∣∣
3/2

Ω1(q)Q2[F̂n, G̃n](q) + Ω1(q)Q2[F̂n, G̃n](q)

Ω2
1(q)− Ω2

2(q)
,

(46)
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(a) Change of α (b) Change of β

(c) Change of γ (d) Change of ω

Figure 8: Mode profiles with initial value F̂0(q) = sech(q) for h = 0.5 in physical space (a): β = ω = γ = 1, α = −1 (green), α = 3 (magenta), α = 10

(black) two equivalent wave peaks; (b): α = ω = γ = 1, β = 1 (green), β = 6 (magenta), β = 18 (black); (c) leap property: α = ω = β = 1, γ = 1

(green), γ = 6 (magenta), γ = 18 (black); (d): α = β = γ = 1, ω = 1.5 (green), ω = 0.5 (magenta).
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where

θ1 =

∫ (
F̂ 2
n(q) + G̃2

n(q)
)
dq,

δ1 =

∫
1

Ω2
1(q)− Ω2

2(q)

{
F̂n(q)

(
Ω1(q)Q1[F̂n, G̃n](q) + Ω2(q)Q2[F̂n, G̃n](q)

)
+G̃n(q)

(
Ω1(q)Q2[F̂n, G̃n](q) + Ω2(q)Q1[F̂n, G̃n](q)

)}
dq.

(47)

Similar to the case of stationary solitary wave, by numerical simu-

lation, as n→ ∞, we have

θ1(F̂n, G̃n)

δ1(F̂n, G̃n)
→ 1,

and function sequences F̂n(q) and G̃n(q) are convergent. We set
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F̂n(q) → F̂s(q) and G̃n(q) → G̃s(q) as n→ ∞. Then F̂s(q), G̃s(q)

is a fixed point of nonlinear integrable equation (43), and their Fouri-

er inverse transformation F(nh),G(nh) is a approximate solution

of Eq. (41). Let us give a numerical simulation for the case of the

following parameters and initial functions:

α = 2, β = 0.5, γ = 1, ω = 1, h = 0.5, v = −0.25, δ = 0.5,

F̂0(q) = sech(q), G̃0(q) = sech(q) tanh(q).

The following table gives the result of the numerical simulation:
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n |θ1(F̂n, G̃n)/δ1(F̂n, G̃n)| ∥F̂n − F̂s∥L2 ∥Ĝn − Ĝs∥L2
0 5.821356102 2.281272518 0.8568407788

1 0.8226148954 0.4123725698 1.229177002

2 0.9700214726 0.3184335813 0.6361060322

3 0.9973277869 0.2508873299 0.3521664710

4 0.9994003139 0.1829277594 0.1960756501

5 0.9992797673 0.1277556029 0.1089196004

6 0.9991680137 0.08687764605 0.06063248271

7 0.9991812547 0.05790679463 0.03394770281

8 0.9992867774 0.03785790219 0.01912434510

9 0.9994309015 0.02418053795 0.01079248505
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10 0.9995737753 0.01493796539 0.006031421443

11 0.9996957398 0.008733876954 0.003258313085

12 0.9997913302 0.004589589679 0.001610932003

13 0.9998623747 0.001831145764 0.0006137772628

14 0.9999133525 / /
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Fig. 9 gives the shape of the solitary wave in physical space with

initia values F̂0(q) = sech(q), G̃0(q) = sech(q) tanh(q) and param-

eters α = 2, β = 0.5, γ = 1, ω = 1, h = 0.5, v = −0.25, δ = 0.5.
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(a) (b) (c)

(d) (e)

Figure 9: Soliton shape with initia values F̂0(q) = sech(q), G̃0(q) = sech(q) tanh(q) in physical space for α = 2, β = 0.5, γ = 1, ω = 1, h = 0.5, V =

−0.25, δ = 0.5.
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4. Conclusions

• By using the plane map approach, we have addressed the spatial

properties of nonintegrable dNLS equation (4).

• By using discrete Fourier transformation method, we have ob-

tained numerical approximations of stationary and travelling soli-

tary wave solutions of the nonintegrable discrete NLS equation.
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THANK YOU
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