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The first three international conferences: “Nonlinear Waves -- Theory and Applications” took place in Beijing,
China in the summers of 2008, 2010 an‘d 2013. These conferences were characterized by their high level of
scientific content and attractive venue for collegial interactions. Each of the three conferences had
approximately 200 speakers delivering talks on a wide range of topics in nonlinear waves. Detailed
information on these conferences can be found at the websites:

http://lsec.cc.ac.cn/~icnwta, _http://Isec.cc.ac.cn/~icnwta2/ and http://Isec.cc.ac.cn/~icnwta3/.

Based on the success of these three conferences, we are now organizing the fourth international conference:

“Nonlinear waves --- Theory and Applications” in Beijing, China (on the campus of Tsinghua University) from
June 25-28, 2016. As before, the goal of this conference is to survey recent advances on a wide range of

topics of current interest in nonlinear waves and related phenomena including: integrable and non-integrable
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1. Introduction

Nature Physics, October 2015

PT-symmetry in opticsis
ranked among

top 10 physics discoveries
of the last 10 years
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1. Introduction (cont’d)

So what is PT symmetry in optics?

In optics, PT symmetry mean that the refractive
iIndex is even, and the gain-loss profile is odd.

Or loosely speaking, PT symmetry in optics means &t
gain and loss are balanced

The concept of PT symmetry was introduced first by
Bender and Boettcher (1998) as a generalization of
guantum mechanics.

It was later introduced into optics by

El-Ganainy, Makris, Christodoulides and Musslimani (2007)




1. Introduction (cont’d)

Why is PT symmetry interesting for optical physics?

Many reasons:
Fundamental new physical phenomena
Applications to novel optical devices
Enlightening ideas



1. Introduction (cont’d)

(1) Fundamental new physical phenomena

PT systems are dissipative due to gain and loss.
However, they admit many properties of conservative
systems, such a

all real linear spectrum
solitons exist at arbitrary power levels
These properties are very surprising.

=¥ conservative
% systems

dissipative
systems




1. Introduction (cont’d)

(2) Applications to novel optical devices

Single-mode PT lasersKeng, et al. Science 20)4
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1. Introduction (cont’d)

(2) Applications to novel optical devices

Normalized intensity

Single-mode PT lasersHodaei et al. Science 2014
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1. Introduction (cont’d)

(3) Enlightening ideas

Loss was used to be considered as a detrimental
physical effect that should always be suppressed.

PT symmetry makes loss useful!
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1. Introduction (cont’d)

Why do we study nonlinear effects in PT systems?

1. Because nonlinearity is inherent in many opticadystems.

For instance, lasing is well-known to be an intringally
nonlinear process.

As the laser power amplifies inside the laser cawit
nonlinear effects keep increasing.

2. Because nonlinear PT systems exhibit very inteseng physical
phenomena.
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2. Phase transition in PT-symmetric systems

Currently, all important applications of PT symmetry (such as PT
lasers) hinge on the phenomenon of phase transitiom PT systems.

What is phase transitionin PT systems?

at lower gain/loss  at higher gain/loss

refractive index refractive index

Phase transition

X gain ind loss occurs when the
linear spectrum

1 : changes from all-

real to complex.

gain and loss
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2. Phase transition in PT-symmetric systems

In PT lasers,
linear spectrum

Re(u)

Lasing occurs due to the appearance of complex emgalues
In the linear spectrum above phase transition.

Question: how does lasing light behave when its iemsity
IS high enough to trigger nonlinear effects?

This question was not considered in previous expenents.
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3. Nonlinear dynamics near phase transition

In the beginning of this talk, we use a simpler mathematical
model to study nonlinear light propagation in 1D PT media
around phase transition (Nixon and Yang, 2015).

The mathematical model is the well-known NLS equation with a
PT-symmetric potential,

v, + 0, — V(e)¥ +o| V¥ =0,

z: propagation direction
x: transverse direction and
o = +1: sign of nonlinearity:.

The complex potential V' (z ) contains gain and loss and is assumed
to be PT-symmetric,

Viz) =V (-z).



3. Nonlinear dynamics near phase transition

Why study around phase transition? Because
e phase transition is important in applications

e phase transition allows us to study this nonlinear problem
analytically

At phase transition, the linear spectrum is

2 .
=
- Ko
degenerate
1
_92 0 2
Re(u)

where the discrete eigenvalue g is degenerate (with algebraic
multiplicity 2 and geometric multiplicity 1).
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3. Nonlinear dynamics near phase transition

This means that at phase transition, the linear operator
LO = a.m‘ + VE](EU) — Ho
has an eigenfunction v, and a generalized eigenfunction u,, where

Lou. =0, Lou, = u.

Now we consider a perturbed PT potential
V(zye) = Vio(z) + € Va(x)

near phase transition, and determine the corresponding nonlinear
solutions.

Perturbation expansion:
Pz, z) = (Eul(;r:} Z)+ e2uy + €us + . . ) elHo?

where 7 = ez.
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3. Nonlinear dynamics near phase transition

The uy and w9 solutions are

uy = A(Z)ue(x),

Us = —iAZug.

At order ¢ we have
Lyus = —Azzu, — AVou, — o| AI* Alu,| *u..
The solvability condition of this equation is
Ayy — aA+ oy APA =0, (2)

where
J= Vauldz o [ |ue|*ulde

o0 ? (8.9
o ueugde o uweugdz

Yy —

Note: this A equation (2) is our reduced model equation for the
amplitude of nonlinear solutions, o > 0, and oy is a real constant.
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3. Nonlinear dynamics near phase transition

Predictions of our model equation:

1. There is a continuous family of soliton solutions (not bifur-
cating from linear modes) above phase transition.

Reason: the ODE model admits a family of stationary solu-
tions with non-zero minimum amplitude,

. ¥
A(Z) = Age™? ) g = E4[o1 AR —a, A > o
1

linear spectrum

refractive index
— L]
3 e
E .
gain/loss
x Ref(u)
power curve of solitons Profile of a soliton

Re(v)

18



3. Nonlinear dynamics near phase transition

Comment:

It is often easier to predict soliton families bifurcating from
infinitesimal (linear) modes.

It is harder to predict soliton families NOT bifurcating from
linear modes.

Our analysis was successful in doing this.

Implications for PT lasers at nonlinear stage:

As the lasing beam amplifies and nonlinearity becomes sig-
nificant, the lasing beam can approach one of those stable
soliton states at higher powers.
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3. Nonlinear dynamics near phase transition

Predictions of our model equation:

2. Above phase transition, oscillating solutions also exist. Rea-

SO11:

[mplications for PT lasers at nonlinear stage:
As the lasing beam amplifies and nonlinearity becomes signif-
icant, the lasing beam may also reach a state with oscillating

power levels.
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4. Symmetry breaking of solitons in PT-symmetric media

A wvery surprising phenomenon in PT systems is symmetry-
breaking bifurcation of solitons.

We find that for a special class of PT-symmetric potentials,
V(z) =~ |g° () +ig'(z)],

g(z): an arbitrary real and even function
a: an arbitrary real constant,

symmetry breaking can always occur (Yang OL 2014).
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4. Symmetry breaking of solitons in PT-symmetric media

This is surprising for a number of reasons.

e For asymmetric solitons in a PT-symmetric potential, it is
harder to balance gain and loss, especially since these asym-
metric solitons exist at arbitrary powers

¢ [n ageneric PT-symmetric potential, in order for symmetry
breaking to occur, infinitely many nontrivial conditions have to
be satisfied.
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4. Symmetry breaking of solitons in PT-symmetric media

Example:

o

Potential
&

What this means is
that, in PT lasers,
when the laser power
becomes very high, its
lasing profile may
break PT symmetry.
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5. Soliton families in non-PT-symmetric media

Why does symmetry breaking occur in PT systems?
A challenging question.

One step toward its understanding is to study:

properties of solitons in non-PT-symmetric potentials of a
similar form

V(z) = — [¢°(z) + ig' (x)] ,

g(x): an arbitrary real asymmetric function

4 refractive inl:lex
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5. Soliton families in non-PT-symmetric media

Why study these non-PT-symmetric potentials?

Because
e these potentials are dissipative (with gain and loss)
e they are non-PT-symmetric

e yvet we will show that they possess remarkable properties anal-
ogous to PT systems and conservative systems

dissipative conservative
systems x systems
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5. Soliton families in non-PT-symmetric media

One remarkable property of these non-PT potentials is that
they admit continuous families of solitons bifurcating from linear
modes, similar to conservative systems.

|) L (c)

=k

potential
poOwWer

soliton {|]%)

=
=

2.5 | A5 4 =10 -5 ] a 10

These soliton families are surprising because there is no PT sym-
metry here.

How do we understand these soliton families in non-PT poten-
tials?
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5. Soliton families in non-PT-symmetric media

Mathematical formulation:
W, + W, + [¢%(z) + g/ (2)]¥ + o|¥*¥ = 0.
Solitons: ¥ (z,t) = ¢ (x)e'™*, where
Yow — 1 +[g° () +ig'(2)]¥ + o[’y = 0. (3)

Question: why does this dissipative non-PT system admit con-
tinuous families of solitons bifurcating from linear modes?

This is a nontrivial question, and it is hard to answer using the

complex variable 1.

So we will reformulate this problem using polar variables

1/)(:17) — ?"(x)e'ﬂlfg(:!:)d:::
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5. Soliton families in non-PT-symmetric media

One key step in our reformulation is that, the soliton equation
(3) admits a constant of motion

dJ
i

where

o
J=ri— '+ §T4 + (0 + g)%.

Using this constant of motion, the soliton equation for ¢ can be

reformulated as a new equation for R = r*:

Ryw — 4uR + 30 R* £ 29\/4uR? — 20 R3 — R? = 0,

This new equation is for a real variable R only!
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5. Soliton families in non-PT-symmetric media

At low amplitude, this new equation becomes

Ryw — 4R+ 2g\/4uR? — R2 = 0,
which is a new type of eigenvalue problem:
e it is scaling-invariant in R but is nonlinear in R;

e its eigenvalue u also appears in a nonlinear way.

This new eigenvalue problem admits eigenmodes (R, i) = (¢, o).

From this infinitesimal eigenmode, we can use perturbation ex-
pansion to construct its soliton solutions.

But this perturbation calculation is very different from conven-

tional perturbation calculations of solitons (Nixon and Yang,
2015, submitted).
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5. Soliton families in non-PT-symmetric media

To see why, we do the perturbation expansion

R = E(RQ+ER1+E2R2—I—...)?
po= po €.

At order ¢, we find
RG — C{]qba

where ¢ is a positive constant to be determined.

At order €2, we get
LRy = F,
where

L = a.r.r + pla.r + Pa,

F = Cﬂ(fl - cﬂgf2)7

and py, po, f1, [o are certain functions of eigenmode . 30



5. Soliton families in non-PT-symmetric media

What is unusual about this perturbation calculation? Because in the R1
equation

LR, =F,

All functionsin the kernel of the adjoint operator LA are unbounded.

Thus it isnot obvious how to apply Fredholm Alternative to derive
the solvability condition.

|dentifying this solvability condition and applying it to this
perturbation calculation is a new feature of the problem.

We have identified this solvability condition and succeeded in
finishing this perturbation procedure.

The outcome of this calculation: indeed a continuous family of

solitons can bifurcate out from linear modes for non-PT potentials
of the form g*(x) + ig'(z).
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5. Soliton families in non-PT-symmetric media

We have also shown that in the NL S equation with a non-PT complex
potential,

i, + W, — V(z)¥ + 0| V[>T =0,

only potentials of the form

V(z)=— [¢°(z) + ig ()],

admit continuous families of solitons.

No other potentials share this property.
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5. Soliton families in non-PT-symmetric media

How do we show this?
Soliton solutions: W(z,t) = ¢(z)e”, where
Yrw = 1+ V(@)y) + ol = 0.

Observation: for soliton families, existence of a constant of motion
is critical.

J(x,1) is a constant of motion in the soliton equation if ‘% = (.

Thus, our strategy is to determine, what complex potentials V()
admit a constant of motion?
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5. Soliton families in non-PT-symmetric media
First we split the complex potential V' (z) into real and imaginary
parts,
Vi(z) = vi(z) + iva(z),
where v{(z),vs(x) are real functions.

We also express the complex function ¥ (z) in polar forms,

Y(z) =r(z) E{ffﬂ{ﬂi}dﬂ:?

Substituting these expressions into the soliton equation, we get

Per — 1T + 07 + ord — r = 0,

(r*f), = —vor*.
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5. Soliton families in non-PT-symmetric media

In the absence of the potential (v; = vy = 0), this system admits
exactly two constants of motion

J, = r%6
and
Jo =12 — pur* + ;:4 + %6,

where dJ,/dx = dJy/dz = 0.

In the presence of the potential, we calculate d.J; /dz and d.J>/dz,
and derive conditions on (v, vs) so that d.Ji/dz is a total deriva-
tive of x (hence a constant of motion ensues).
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5. Soliton families in non-PT-symmetric media

First we consider dJ, /dx. In the presence of potential, we have

dJy/dz = —var?.

In order for d.J;/dx to be a total derivative,
Uy = U'?

i.e., the potential V' (z) is real (a conservative system).

This is not what we want since we only consider complex poten-

tials.
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5. Soliton families in non-PT-symmetric media

Next we consider d.Jy/dx. After some algebra, we find that

d.
d—f = W, +r*vy, +2(r*0), /Uﬂdif;

where

W = —vr? — 2?*29/ vadi.
Then utilizing the soliton equation, the above equation becomes

@ =W, + r? (t! 1y — 2U9 / t’gdﬂ;’) .
dz

In order for the right side of the above equation to be a total
derivative, the necessary and sufficient condition is

Uy = Zt'g/t'gdiﬂ.



5. Soliton families in non-PT-symmetric media

This condition can be rewritten as

2
Vip = (/?;gdz) :

H

2
v = ( / ?Jgdi") + C

where C'is an arbitrary constant which can be set zero.

g = /?Jgdi‘,

the potential V' (z) which admits a constant of motion then is of

thus

Finally, denoting

the form

Viz) =g°(z) +ig'(z).

Thus soliton families can only exist in this class of complex non- 38
PT potentials.



6. Extension to 2D

We find that symmetry breaking of 2D solitons is also possible in
a class of complex potentials (Yang 2015)

Vig,y) = — [¢*(x) +ig' (z) + h(y)] .

g(x): an arbitrary real and even function
h(y): an arbitrary real function of y,
o: an arbitrary real constant.
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6. Extension to 2D

Example:
V(z,y) = — [¢* (=) +aglz) +id' (x) + h(y)] ,

2

g(z) =03 [e—'if“’ﬁ?' —I—E_':I_I‘EF], o = 10,

E—[y+1.‘£}'—’ _I_DIBE—IIy—].EF} .

Im (V)
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6. Extension to 2D

Symmetry breaking in two dimensions
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6. Extension to 2D

We have also found that, if potentials of the above form

Vie,y) = — [g.‘.rE () +ig'(z) + h(y]] ;

are non-PT-symmetric, these potentials admit continuous fami-
lies of 2D solitons as well.

In other 2D non-PT potentials, soliton families are forbidden, and
the wave system behaves as a typical dissipative system.
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Technical Summary

o Study of nonlinear effectsin PT opticsisaresearch frontier

o Inthistalk, we studied nonlinear dynamics of PT optics
above phase transition, and showed analytically that families
of stable solitons and oscillating states prevail under the
effects of nonlinearity.

 We also analyzed why in aclass of non-PT-symmetric
complex potentials, families of solitons exist. This study
paves the way for the understanding of symmetry breaking
In that same type of potentials.

* Thesefindings are mathematically and physically
surprising, and they could have interesting implications for

operations of certain PT devices (such as PT lasers).
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Non-technical Summary

dissipative conservative
systems | systems

We showed that PT-symmetric systems and certain classes of
non-PT-symmetric systems, although being dissipative, exhibit
properties of conservative systems.

We identified those non-PT-symmetric systems as
ein 1D, V(z) = —[¢°(z) +ig' ()]
oin 2D, V(z,y) = — [¢°(x) +ig'(z) +h(y)]



