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@ Historial background of long-time asymptotics—Review of previous
works.

@ Q: how long it takes for us to get a good approximation between
long-time asymptotics and analytical solutions?

e Construct an initial condition with non-zero reflection coefficients.
o Compare difference between finite difference and asymptotic solutions.

@ Ongoing work: Numerical approach of inverse scattering with the
above scattering data.

@ Conclusion
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Historial review:

Zakharov &Manakov (1976), Ablowitz & Segur (1977).
Segur & Ablowitz (1981): KdV, Painlevé II.

Deift and Zhou (1990), Deift, Venakides & Zhou (1994), Kriiger &
Teschl (2009), Grunert & Teschl (2009): KdV.

Buckingham & Venakides (2007), Boutet de Monvel, Its & Kotlyarov
(2007), Boutet de Monvel, Kotlyarov, Shepelsky & Zheng (2010),
Boutet de Monvel, Kotlyarov & Shepelsky (2011):

NLS equation on line or half line.

Boutet de Monvel et al. (2009, 2010): Camassa-Holm equation.
Boutet de Monvel & Shepelsky (2013): Degasperis-Procesi equation.

Boutet de Monvel & Shepelsky (2015): Vakhnenko equation.
and so on....
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@ Long time asymptotics of Camassa-Holm equation:

o Boutet de Monvel, Kostenko, Shepelsky and Teschl (SIMA, 2009):
Suppose u (x, t) is a classical solution of Camassa-Holm (CH)
equation

U + 2uy — Ugxt + 30Uy = 2Uy Uy + Ulgny, x €ER, t>0. (CH)

The asymptotics of solutions u (x, t) can be divided into four regions

by considering the associated Riemann-Hilbert problem: ({ = %)

t=—1/4 =0
(iii)2nd "

oscillatory ©
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o Long time asymptotics :
o (i) Soliton region: ¥ > 2+¢ ¥V small ¢ > 0.
u(x,t) = N-soliton+O (t~) for any L >0,
o (ii) First oscillatory region: 0 < ¥ >2 —¢
(x, t) close to the form of slowly decaying modulated oscillations:

. _
u(x, t)= Wsm (cot+c3logt+ci)+ O (t "‘)
for any a € (%,1) provided L > 5, where ¢, (m=1,...,4) are
functions of %, which are expressed in terms of scattering data.
o (iii) Second oscillatory region: 2! +¢ < X < 0.
u(x, t) close to the form of a sum of two slowly decaying modulated
oscillations.
e (iv) Fast decay region: 7 < - -
u(x,t) ~0.
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e Boutet de Monvel, Its and Shepelsky (SIMA, 2010):

@ Continuing the results in 2009, in the two transition regions:
(T1): the region between (i) and (ii),
(T2): the region between (iii) and (iv),
the asymptotics of solutions is expressed by solutions of Painlevé Il

equation.
w” (x) = 2w? (x) + xw (x) . (P2)
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o (T1) region: For |% — 2| t3 < e with any € > 0,

win

u(x,t)=—(4/3)7t75 (Wl (2) —w| (2)) + O (t71),

where z = 67 (¥ —-2) t3,

o (T2) region: For |% + H t3 < e with any e > 0,
5
u(x,t) =126t 3w (y)sin <34\/§t— 30 yts 4 A> +0 <t_%)
23

1
where y = — (£2)% (2 4+ 1) t3, A being a function, depends on
scattering data.
wi (z) & wy (y): the real-valued, non-singular solution of (P2),
wi (z) ~ —R(0)Ai(z) as z — oo,
wy (y) ~ ‘R (\/5/2) ‘Ai(y) as y — o,
where R (k): right reflection coefficients.
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@ Question:

@ How long it takes for us to get a good approximation between the
long-time asymptotic solution and the analytical solution of
Camassa-Holm equation 7
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Question:

@ How long it takes for us to get a good approximation between the
long-time asymptotic solution and the analytical solution of
Camassa-Holm equation 7

o Answer:
Adopting a numerical approach.
Construction of a specified u (x,0) such that the initial value problem
of CH equation can be numerically predicted by finite difference
method.

@ Then we compare the finite difference and asymptotic solutions to
partially answer this question.
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Question:

How long it takes for us to get a good approximation between the
long-time asymptotic solution and the analytical solution of
Camassa-Holm equation 7

Answer:

Adopting a numerical approach.

Construction of a specified u (x,0) such that the initial value problem
of CH equation can be numerically predicted by finite difference
method.

Then we compare the finite difference and asymptotic solutions to
partially answer this question.

The asymptotic solutions in (i) to (T2) depend on u (x,0).
Given an arbitrary u (x,0), usually we can't express asymptotic
solution explicitly.

We need a proper (or specific) u(x,0) such that the asymptotic
solution can be calculated.
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@ Boutet de Monvel, Kotlyarov, Shepelsky, Zheng (2010):
Initial boundary value problems of nonlinear Schrédinger equation
it + U + 2 |uf’ u =0,

@ They use some initial conditions to obtain numerical solutions
indicating that the long-time asymptotics seems to appear.

@ They didn't consider comparison between asymptotic and numerical
solutions.

CH equation Oct 20, 2015 10 / 61



Result 1
Initial condition of Camassa-Holm equation

with non-zero reflection coefficients
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CH equation u; 4 2uy — Uxxr + 3ully = 2Ux Uyy + Uy
Let the momentum m(x, t) 1= u (X, t) — ux (X, t) + 1.

Cauchy problem for CH equation:
We find the initial condition u (x, 0) s.t.

(i) u(x,0) : smooth, rapidly decreasing as |x| — oo,
(i) m(x,0) > 0, (then m(x,t) > 0Vt > 0)

(i) fi (14 )™ (1 (x,0) = 1] + |y (x,0)| + my (x, 0)]) de
< oo for some n € IN.

Existence of classical solutions: Constantin and Escher (1998).
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@ The Lax pair of CH (Camassa and Holm (1993)) is

Ly = % (—¢XX + ilP) = Ay, (Lax1)

1
ve== (55 +0) 9t u (Lax2)
° (¢,),, = (¥,,), iff CH equation holds.

u(x,()) - - R(k),u,,y,(j=1,..,N)
direct scattering (sc ttering’data)
L=
(r=0)
Camassa-Holm timg evolution
uA20u ~u 43w =20 Fuu,, P, =—( ‘+")\I',+ U
u(x,1) . . R(k.)0,,,(6)(j=1..., N)
inverse scattering
Lyp=ny
(r>0)
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Lw = m(}(,t) (_l?bxx + %110) = )\l/]

° Let/\:%+k2,

y
Ply)=(m0x )" (x),
then (Lax1) can be transformed to
~¢,, +q(y. )P =KD

with
myy (y.t) 3 (my)Q(y,t) + 1-m(yt)

a0y 1) = 000 T 16 w00
@ By the integral condition of m(x,0),
*© 1+n
[ @+ a0 dy < .

CH equation

(Lax1)

:x—fxoo (W— 1) dr, hence Z—i =/m(xt)
:(m

Am(y,t) *

Oct 20, 2015
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o Faddeev (1958), Deift & Trubowitz (1979), Marchenko (1986):
o (1) Discrete spectrum (k? < 0):
eigenvalues: k = i;tj, j=1,...,N for some N € IN, with the

corresponding eigenfunction: l]Jj,
Let ;" (right norming constants) be defined by

D) =7 e +o(1) asy — oo,
and ;" (left norming constants) be defined by

B () =7, e +0(1) asy — oo,
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@ (2) Continuous spectrum:
Let = ¢ (y, k) be the continuous eigenfunction for each k € R,

s | N R (W asy e
T (k)e ™:asy — —c0

where T (k) : transmission coefficient,
Ry (k) : right reflection coefficient.
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@ (2) Continuous spectrum:
Let = ¢ (y, k) be the continuous eigenfunction for each k € R,

s | N R (W asy e
T (k)e ™:asy — —c0

where T (k) : transmission coefficient,
Ry (k) : right reflection coefficient.

. e® + R (k)e™;asy — —oo,
T (k)e™; asy — oo.

where R_ (k) : left reflection coefficient.
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@ (2) Continuous spectrum:
Let = ¢ (y, k) be the continuous eigenfunction for each k € R,

b [ R e ey
T (k)e ™:asy — —c0

where T (k) : transmission coefficient,
Ry (k) : right reflection coefficient.

. e + R (k)e ™ asy — —o0,
T (k)e™; asy — oo.

where R_ (k) : left reflection coefficient.
N

N
e Scattering data: R; (k), {yj, ,er }j:1 or R_(k), {.Mj:’)’f}.
q(y,0).

w.r.t.
1
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Rk)w,.y,(j=1...N)

direct scattering (scattering data)

Ly=hy

u(x,0)

(r=0)
Camassa-Holm time evolution
U 20U, 1 0= 20, b=l
ulx,t) =—————— Rkt v (0)(j=1e N)
inverse scattering
Ly=1y
(r>0)

@ Direct problem:

u(x,0) — m(x,0) - m(y,0) — q(y,0) — scattering data at t = 0.
@ Inverse problem:

u(x,t) «—m(x,t)«— m(y,t) < q(y,t) < scattering data at t > 0.

@ The processes m (x, t) «<— m(y,t) < q(y, t) is the main difference
between the IST of CH and KdV.
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@ How does the scattering data influence the long-time asymptotics?
@ By the long-time asymptotic results, we have:

e The number of discrete eigenvalues M (j =1,..., N) determines the
number of solitary waves in the soliton region (i).

o The appeareance of reflection coefficient R+ (k) makes the oscillatory
phenomenon in oscillatory regions (ii) and (iii) to occur.
If R+ (k) =0 = pure soliton.

o Ex: in region (ii),

u(x,t) ~ %sin (ct+c3logt+ ),

= —csy/ 5k log (1 - Ry (c5))°.
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@ Inverse scattering of CH equations:
e Constantin (2001): continuous spectrum,
e Johnson (2002), Lenells (2002),
Constantin and Lenells (2003)
Li and Zhang (2004),
Constantin, Gerdjikov & lvanov (2007) et al...

Inverse scattering with zero reflection coefficients to construct the
pure N- soliton solutions.
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Theorem (C.- and Sheu (JNMP 2015)):
Let 0 < gg < 1, consider the CH equation subject to the following
initial condition

A(A+1+log(e*~A)) for x > log (1 + A),

eXx

gy (x,0) = A(A+1+log((1+A)2e*—A))

(1+A)%e—x

, forx <log(1+A).

where A := lf—oqo. The above initial condition in space-time domain
corresponds to the following scattering data in spectral domain:

—qo elo] + ao
i( ) q0_|_2lk’ Aul 2 ' ’)/1 2
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@ Momentum m (x, t) := u (X, t) — ux (x, t) + 1.

@ Initial momeutum

2
(A=) forxzin(1+4),
m(x,0) = e N2
((1:;72_)“) , forx <In(1+A).
m(x,0) > 0.

o Consider gy = % :

u(x0) " wix0)*
09
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@ Proof:
e Lemma (Whitham (1974), Drazin & Johnson (1989))

If g(v) = —qod (y) then the scattering data corresponding to
- - o
is
—40 90 + 90
Ri(k)=—2 =B = [
=0 =gk M=y m 2

e We recover m(y,0) from q(y,0) = —qod (y)
(inverse scattering at t = 0).

CH equation Oct 20, 2015
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o (Continued)

o Constantin’s version of IST to recover m(y, t) from g (y, t) (2001).

Find the positive solution C = C (y, t) from

1 1 :
Cy = C<q(y,t)+4> Tl lim C(y t)=1.

|y|—00

then m (y, t) = C*(y.t) (put q(y,0) = —qod (y)).
e Find u(y,0) from m(y,0): change u— uyy = m—1 to

muyy+§myuy—u:1—m

d 1
by & =m(y,t)2.
@ Find change of variable between y and x by solving

%:m(y,O) , lim (y(x) —x) =0.

X—00

=
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Result 2:
Difference between finite

difference and asymptotic solutions
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Theorem (C.- Yu and Sheu (arXiv: 1412.1234)):

Let 0 < gg < 1, consider the CH equation subject to the initial
condition ug, (x,0). Then the long time needed to approximate the
asymptotic solutions in the six regions (i)-(iv), (T1) and (T2) can be
found.
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e Theorem (C.- Yu and Sheu (arXiv: 1412.1234)):
Let 0 < gg < 1, consider the CH equation subject to the initial
condition ug, (x,0). Then the long time needed to approximate the
asymptotic solutions in the six regions (i)-(iv), (T1) and (T2) can be
found.

@ The long-time asymptotic solutions depend on the scattering data
(Boutet de Monvel et al.’s results).

@ Since now under ug, (x,0), the scattering data can be explicitly
expressed, the asymptotic solution can be written down.
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@ (i) soliton region: ¥ >2+¢

u(y t) = 29

1
2 2
1-q} 2, 1 _ 2 L+ag
( 0) exn<qo<y o Taexp|l —doly 1-03 i 7
1+exp< qo(y ﬁt+1 |og2>)78
x(y,t) =y +log

1 -q0
1+exp( qg<y jt—i- Iog2>) T
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oTakes:%,t:%:

u{m.(x,rzgﬂ)

0.8 current solution

0.7 soliton re gion

0.6 [
05
04
03
0.2 174

0.1

N
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o (ii) first oscillatory region: 0 < J:= % <2—e:

O . 3 a
u(x,t) = 1\/(5) sin <(12+kfg(fg)))2t —vo () log t 4 do (@) +O0(t7)

where

__1 VIHAZ-1-7 _ 1 1451447
Vo (§) = — 355 log TRt 1" ko (0) = 3y — ==,

(0) _ 2ko (£)vo(8)
a (0= \/(1+k5<g>)(2—k5<a>)
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500 =7 - (tan (259) 1 1)
—vo (¢) log 320 (VIFAZ-1-0) (1+47—VIF4T)

(vitas-1)’
+4tan~? ( q‘@) +4ko (0) Iog qu
4ko () (C) 1
+ 3T ko(C) 1+4{;’2 log 2+4(;‘2 dg

+3 f_kko@ (i Yog (ko (€) — ©) dC +-arg T (iv0 (0))

argT (ivo (7)) _argr(1+ivO(C)>—%
_VOr +Zn 0(1+n_tan_111-/§—70n)_g
= (—fyvo (0) + X0 ( 14(57) —tan™ ﬁoﬁ))) -3

where ¢ = lim,_.co (Xf_; £ — log n) = 0.5772156649.... is the Euler
constant.
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@ Recall Boutet de Monvel et al.'s results:

Decay rates:

region (i)

region (ii)

t—L

t™* a € (3,1) provided L >5

@ We need a longer time to get the asymptotic solution in region (ii)

than region (i).

Chang ()
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o (iii) second oscillatory region: 2! +¢& < % < 0:

O -
u(x,t)= 1\/(5) sin <(1ik,?2(g) § t —vo () log t + do (O)
)
(1) 3
a (O 2ki (§) _
+ 1\/E sin <( +k12(€))2t+1/1 () logt— 01 (é))
+0 (™)

kO (g) _ l 1+§ g\/1‘|’4C kl (C) — % _1+€+§\/1+4€v

\/(4+k0 0 7_k0 ) < (g) - _\/(};'1‘/(2(5)

\/‘f\!
|

>
=N
—~
oy
—

|
Alw
S—|
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— VI+4l-1-7 _ 1 V1+40-1-¢
vo () 2”|OgW' Vl(é)—_ﬁbgm-

3o (Q) =Z-— (tan (%()) + 71) +argI (ivo (0))
327 (V140 -1-C) (1447 —/IT47)

—vg ({) log (m*1)3

—|—4tan71 (%) +4ko (é) log 1= qu

ka (
(f— y O"”f +fk1 ) 1+4§2 log 2+4§2 d¢

+;/0 +2v1 (0) log %

b= (S5O 55 tog (ko ()~ ©) (77hyz e

q3+48° )¢
+ Jiio) o8 (& - ko(O)(qg%;mdc,
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with

01(¢) =4 +tan” ( 251(@) +m+argl (ivi (0))
1 (D)o 320 (/140 +1+¢) (1440 +/1+47)
' g —(vitaz+1)’

-1 1+
—4tan (zk?%@) + 4k () log - Zg

4k —k1(2) ko
+ 7'[(§) < 7001 +f—(;< fkl ) ]_+4§ +4§ g

k k
—+h —2v0(g) log %

h = ( "’f )|Og ki () —¢) (%%’f@z)gd‘:
+ Jie) 108 (6~ k(D) (7t ey 9.

arg [ (v (£)) = =71 (§) + oo (45 —tan 1 18) — 7.
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@ Take e =

14

80

at t = 40, 80, 160, 200 :

w w
o2 0z
earding term of (10]
T oareiian 1) learding term of (10)
- current solutien
s 04
a1 o
02 0z
2% T 05 o e = ] ¥ g ]
@ “
oz 02
earding term o (10) learding term of (10)
current solution ~ Gurent solution
orf o
= or - . =0 o ~ . s
— e ~— S
ok o
02 5 7] 3 ] -oz. © o
x
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e (iv) fast decaying region: ¥ < ’Tl —¢€
at t = 40, 80, 160, 200 :

o Take e =

14
80"

E05 -
oo00a ero solution
Current solution
se.00]
o000z
s e s o
00002
08|
00002
£ 35 25 25 1E0%5 g =5 5
“@ -
e
zers solution zem solution
imans soluion =20 Corens soluion
2508
26:20]
s 0 s
26:20]
2608
e20|
= By 5 oo =g 200 T5a B
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@ Transition regions:

@ Painlevé Il equation:
w” (z) =2w? (2) + zw (2), z € R,

with the specified boundary condition w (z; r) ~ rAi(z) as z — oo,
where Ai(z) : Airy function.
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Transition regions:

Painlevé Il equation:
w” (z) =2w? (2) + zw (2), z € R,

with the specified boundary condition w (z; r) ~ rAi(z) as z — oo,
where Ai(z) : Airy function.

If [r| =1, w(z;r) ~sgn(r) \@ as z — —oo;

If || <1 wizr)~ d|z|%lsin{§|z|% —342In|z| —9} as
Z — —09,

d? = %lln (1—r2); 0 = %d2|n2—|—arg [F( —éd2)] —%.
If |r] > 1, w(z;r) ~sgn(r) (z—2z) " as z | z.

Ablowitz and Segur (1977), Hastings & Mcleod (1980),
Clarkson & Mcleod (1988).

In CH equation, r depends on right reflection coeff.
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o In(T1), r=1, wmy (2) ~Ai(z) as z — o0; wy (z) ~ \/; as
7z — —00;
e Choosing an interval (z, z2), solve (P2) with the boundary condition

w(z) = \/g w (z) =Ai(z) = ﬁ (z) " M* e—2/3(2)"?

We call this solution as w'™(z).
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o In(T1), r=1, wmy (2) ~Ai(z) as z — o0; wy (z) ~ \/; as
7z — —00;
e Choosing an interval (z, z2), solve (P2) with the boundary condition

w(z) = \/% w (z) =Ai(z) = ﬁ (z) " M* e—2/3(2)"?

We call this solution as w'™(z).

o Take ¢ = %, consider numerical solution and the leading term in the
asymptotics in (T1) region with w; being replaced by w'™ at t = 80
(then 159.25 < x < 160.75) & t = 160 (then 320.95 < x < 319.05).

(a) (b)
oF
0.01
001
ok
0.02 e
-0.01F
3 E]
0,03 o
-0.02
K - asymptotic solution asymptotic solution
] A finite difference 003 e finite difference
~ ) 1 P S | R i 1 1 1
0.05 159.5 160 160.5 004 3195 320 3205
X x
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e In(T2): w

2 (¥) ~ 75 AIY)

as y — 00,

WQ(y)NdWSm{ v = 3d?inly| — 0} asy — —oo

o Take e = %, t =80 (then —20.754 < x < —19.246) & t = 160

(then —40.95 < x < —39.05):

(a)

005

asymptotic solution
finite difference

Chang ()

®)
001
of ,:/
001k S
> N h »
0.02F N e
\\ /
////'
0.03F
asymptotic solution
--- finite difference
0.04 1
1 1 1 1
195 00 -405 -40 305
X
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Ongoing work
Numerical approach of

inverse scattering transform
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o Inverse scattering problem:

._1
" m

= (<t 39) =29 (Lax1)

1 1
Y, = — <2)\ + u> P, + §UX1[J. (Lax2)

o The time evolution of Ry (k), ;, 'yji can be derived by (Lax2)
(Constanin (2001)):

i (t) = u;,
+u. )
77 (1) = 7] exp (M) Ci=1,..N,

)

Re(k,t) = Re(k) exp (5 ).

Chang () CH equation Oct 20, 2015 41 /61



o Gel'fand-Levitan-Marchenko (GLM) integral equation (right reflection
coefficients):

(e ]

K(y,r,t)+f(y+r,t)+/ K(y.z,t)f(z4+rt)dz=0, y <r
y

2 1 foo .
(77 () e+ %/m R, (k,t) e dk.

f(zt):= Z

N
Jj=1

q(y.t) = —2ij(y,yv t).
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o Gel'fand-Levitan-Marchenko (GLM) integral equation (right reflection
coefficients):

(e ]

K(y,r,t)+f(y+r,t)+/ K(y.z,t)f(z4+rt)dz=0, y <r
y

N o
f(z,t) 2 (% ) e 17+ %/_w R. (k. t) e dk.
_/:

q(y.t) = —2:yK(yvyv t).

@ Another version (left reflection coefficients):

y
L(y,r,t)—l—g(y—l—r,t)—f—/ L(y.z,t)g(z+rt)dz=0 r<y

N )

g(z)=Y (v (1) e+ %/ R_ (k. t)e 2 dk.

— —00

q(y.t) =2CZ,L(y,y, t).
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@ Right reflection coeff. v.s. left reflection coeff.

@ Example: one soliton solution of KdV equations.
f(zt)= e 218t o (z,t) = De? 8t
. right reflection coefficients, t = 1, (—10,10), h = 0.04;

)
(b) & (c): left reflection coefficients,
(b): t =1, (—10,10), h = 0.04;
(c): t =3, (—20,20), h=0.04.

@ Blue: IST solutions; red: one-soliton.

(a) (8) (c)
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@ Reference:

o O. Hald, Numerical solution of the Gel'Fand-Levitan equation, Linear
Algebra Appl., 28 (1979), pp. 99-111.

e T. Aktosun, P.E. Sacks, Potential splitting and numerical solution of
the inverse scattering problem on the line. Math. Methods Appl. Sci.
25 (2002), pp. 347-355.
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@ Consider IST w.r.t. the left reflection coeff.
e For y € [—n, n], divide [—n, n] into N parts. Let h = 2W"

yi=-—n+(i—1)h,
r=—n+(G-1h  ijm=1 N+1
Zym =—n+(m—1)h,

Let L (yi,r;) = Ly, g (vi +17) = i,
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@ Consider IST w.r.t. the left reflection coeff.

. . . _ 2’-’
e For y € [—n, n], divide [—n, n] into N parts. Let h = 47,

yi=-—n+(i—1)h,
r=-n+(G-1)h  ijm=1 .. N+1.
Zym =—n+(m—1)h,

Let L (yi,r;) = Lyj, g (vi +17) = i,

then (GLM) can be approximated using the trapezoidal rule

i
m=1

where

L fork=1,i
) 2 v b
ik { 1 otherwise.
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o Recall that g (y,t) = 2%L (y,y, t).
@ We need L;; to get

6 =qlyt) =2 (L=t i =1w,
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o Recall that g (y,t) = 2%L (y,y, t).
@ We need L;; to get

6 =q(yt) =2 (Basgtin) =1,

@ Fori=1j =1,
(i.e., y = —o0 at
Ly.r)+g(y+n+ [  L(y.2)g(z+r)dz=0),
(dGLM) is degenerate.
In this case we set L1 1 = —g11.
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o Recall that g (y,t) = 2%L (y,y, t).
@ We need L;; to get

6 =q(yt) =2 (Basgtin) =1,

@ Fori=1j=1,
(i.e., y = —o0 at
Liy.r)+g(y+r)+ [/ L(y.2)g(z+r)dz=0),
(dGLM) is degenerate.
In this case we set L1 1 = —g11.

@ By the residue theorem,

20, w0,

%el’qg " forz >0,

g(zt)= % for z=0,
0 for z < 0.
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o Recall that g (y,t) = 2%L (y,y, t).
@ We need L;; to get

6 =q(yt) =2 (Basgtin) =1,

@ Fori=1j=1,
(i.e., y = —o0 at
Liy.r)+g(y+r)+ [/ L(y.2)g(z+r)dz=0),
(dGLM) is degenerate.
In this case we set L1 1 = —g11.

@ By the residue theorem,

-2
244 %0,

Pet for z > 0,
g(zt)= % for z =0,
0 for z < 0.

o gi=glyi+r)=g(—2n+(i+j—2)h)=0if
20+ (i+j—2)h<0, ie, i+j<N+2
g1=0
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@ For general i > 2:

@ Define
81,1 s 81,N+1

EN+1,1 - BN+1,N+1

Gj :=prinj11 (G) be the principal sub-matrix of order i + 1, and giT
be the last row of G;.
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@ Similarly, define

Lig -+ Lingr

Lyt11 - Lysanvt

L; =prin;11 (L), and L] be the last row of L;.
e By writing s; =diag(A; 1, ..., Aj i), (dGLM) can be expressed as

(lis1 +hGis)) Li = —gi, i=2,...,N.
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@ Similarly, define

Lig -+ Lingr

Lyt11 - Lysanvt

L; =prin;11 (L), and L] be the last row of L;.
e By writing s; =diag(A; 1, ..., Aj i), (dGLM) can be expressed as

(lis1 +hGis)) Li = —gi, i=2,...,N.

@ For larger i, the matrix size of (/41 + hG;s;) L; = —g; becomes
larger also.

CH equation Oct 20, 2015
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@ Then consider IST to find w (y, t) from g (y, t).
e Constantin’s version of IST is difficult (nonlinear processes).

o Constantin and Lenells's version (2003):
Let ¢ (v, t) be the unique solution of —¢  +q(y,t) 9 = — 19 with
the asymptotic behavor

¢(y.t)~e2and ¢, (v, 1)~ Fe
If H; : IR — IR is the bijection given by

H: (y) = /joo 4’2(151)0’6
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e Proof of H; (y) :ffwmdgze%

o Now —lnyy +q(y, t) P = kP with k2 = -1,
recall A = 1 + k? hence A =0,
then (Lax1) becomes —, + +1 = 0 with solution ¢ (x,t) = eZ .
recall § (y, t) = m (x, £)%  (x, t)
therefore m (x, t)% =¢(y t)e?, e,

m(x,t) = e*¢* (y,t).

CH equation Oct 20, 2015 50 /




e Proof of H; (y) :ffwmdgze%

o Now —lnyy +q(y, t) P = kP with k2 = -1,
recall A = 1 + k? hence A =0,
then (Lax1) becomes —, + +1 = 0 with solution ¢ (x,t) = eZ .
recall § (y, t) = m (x, £)%  (x, t)
therefore m (x, t)% =¢(y t)e?, e,

m(x,t) = e*¢* (y,t).

7‘152(1/1) dy = e*dx,
I pIean) (1”) dy = [*_ eXdX
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@ m(x,t) can then be expressed in a parametric form as follows with y
being considered as a parameter.

m(y 1) =e gt (y 1),
= HZ (y)¢* (v. 1),

x(y,t) =InH(y) = Infyoo¢ dg',‘
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o We find the solution ¢ (y) of —¢  +q(y,t)p=—75

& Lenelles by solving
—e 7 T _ 5 de R.
Py =etr [ (T e ) a@e @) dt v e

@ Discrete version:
N+1

p(vi):=¢;=ei+hY A Exq(E)¢(E),
k=i
where E; = e@ — e@, gk = —n-+ (k— 1) h, e = 6_%,

f_
Aik_

% fork=1i, k=N+1,
1 otherwise.

Oct 20, 2015
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@ That is,
(In+1 — hE%diag (qi)) @ =e

where
o €1
$, :
D= : , e=
(PN-i-l ENI+1
0 Ep --- Ein %
0 0 :
0 _
E" = En—1,n
0 EN,2N+1
0 0 0 0
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o Recall that H; (y) = ffoo mdg — X

@ Discrete version:

(dH)

" 1
Hi:=H(y)=hY_ Al

k=1 4)2 (Ck)
Al = {

where
fork=1, k=1,

otherwise.

[l ST
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For i =1, we set H; = 0.

Solve (dH) for i = 2, ..., N + 1, leading to

H,

Hn 1

=h

H H
A2,1 A2,2

H H
AN—i—l,l AN-&-l,2

H
AN-Q—l,N-i—l

Then w; = w (y;, t) = Hingj-‘, i=1,2,...,N+1.

7

1

2
PN

. _ - 1 -
Final step: recover u from m by solving muy, + 5myu, —u=1-—m

through central difference approximation.

Chang ()

CH equation
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@ Comparison between finite difference solutions and IST solutions:

(—40,40), h=0.02, t =0.1.

Chang ()

1
B IST
B FD
0.5
0
-0.5
| | | |
-40 -20 0 20 40
FD:x, IST:y
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As time get larger, the IST solutions become more far away from the

finite difference solutions.

i.e., as time increasing, the error seems not easy to control.

05

05

=02 =03
1sT 15T
FD FD
05
s
S S o S
05
\ , , , \ , . )
E [ 26 20 EY o o 0
FD:x, IST:y FDx, ISTyy
1
1=04 1=0.5
ST
IsT
®
05
s
o S
05
= G 2 e : : : .
- " = -20 o 0 40
FD:x, ISTyy FD:x, ISTyy
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Undergoing problems:
e Computational error from solving (dGLM).
y 1
@ The errors from f_oo md(j.

In fact, we only compute ffn <P2(1(f ) dg.
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Undergoing problems:

e Computational error from solving (dGLM).
y 1
@ The errors from f_oo m;f@’ 1
In fact, we only compute fﬁn md@.
e Note: Int =0, ¢ (y,0) can be found explicitly:

=, >0,
4><y.0)={ o L

Then also Hy :

1 1
Ho (y) = { et y <0,
1
1_qo+ey—1, y > 0.

_ _1 1
e Missing term is Hy (— f o ¢ = Togs oT(1—q0)e"
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w (x,0) in (—40,40) & h=0.08 at gg = 1/2
(a) without adding the missing term Hp (—40);
(b) add Ho (—40).

(Blue: exact w (y,0); red: IST w(y,0).)

g J
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Conclusion

@ We construct a specific initial condition of Camassa-Holm equations
such that the resulting scattering data have the non-zero reflection
coefficients.

@ Under the specific initial condition, the finite difference solution and
the asymptotic solution and be compared at a large time. The
oscillatory phenomena from the long-time asymptotics can be
captured.

@ About the numerical inverse scattering problem, at short time, the
inverse scattering solution is not far away from the finite difference
solution if the tails at minus infinity are neglected.

CH equation Oct 20, 2015 60 / 61



Thanks for Your Attention

and hope to get advice from you
to resolve the currently encountered problem.

Chang () CH equation Oct 20, 2015 61 / 61



	Introduction
	Long time asymptotics
	CH scattering
	Numerical simulation
	Transition region
	IST
	Conclusion

