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The defocusing NLS equation on the half-line

Dirichlet problem formulation. Well-posedness.
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Theorem (Carroll & Bu, Appl. Anal., 41, 1991)

Suppose that qo € H*(R) and QP € C*(R. ), and assume the
compatibility condition qo(0) = QP(0). Then (for every ¢ > 0) there
exists a unique global in time classical solution of the Dirichlet problem
for the defocusing nonlinear Schrédinger equation on the half-line.




The defocusing NLS equation on the half-line

Dirichlet problem. Integrable methodology.

Main question: how can the solution ¢(x, r) be described in any detail?

Recall the Lax pair (Zakharov & Shabat, Sov. Phys. JETP 34, 1972):
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The condition of simultaneous existence of a fundamental solution
matrix ¥ regardless of the value of the complex parameter k is exactly
that ¢ satisfy the defocusing nonlinear Schrédinger (NLS) equation:
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The defocusing NLS equation on the half-line
Dirichlet problem. Integrable methodology.

The Dirichlet problem can be transformed into a Riemann-Hilbert
problem under some conditions’. First define spectral transforms: Let
ON(1) := €q.(0,1), and define special solutions of the Lax pair:
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x——+00
ar [ =2ik> —i|QP(1)> 2kQP(1) +iON()] o,
GE(I,]{) - |:2kQD(t)* _IQN(I)* 21k2+1|QD(t)|2 T(t,k),
til}gl T(l; k)eZikztU3/€ L

Then define a map {qo, O°, O} — {a,b,A, B} by

a(k) = X22(0;k), b(k) = X12(0;k), A(k) = T22(O;k), B(k) = T12(O;k).

'A. S. Fokas, A unified approach to boundary value problems, SIAM, 2008.



The defocusing NLS equation on the half-line
Dirichlet problem. Integrable methodology.

The spectral transforms a and b are analytic and bounded for S{k} > 0,
while A and B are analytic and bounded for &{k*} > 0. Now define

0= 0 T = s 3 =8 - TR

where d(k) := a(k)A(k*)* — b(k)B(k*)*, and set (k; x, ) := kx + 2k*t.
Then define a contour X and a “jump matrix” J on X \ {0} as:
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Dirichlet problem. Integrable methodology.

Then formulate a Riemann-Hilbert problem (RHP):
Riemann-Hilbert Problem

Seek M(k; x, 1), a2 x 2 matrix function defined for k € C \ ¥ such that
@ M(-;x,t) is analytic in the four quadrants of its domain of definition.

@ The boundary values M. (k; x, t) taken by M(k; x,t) on ¥\ {0} from
+3{k*} > 0 are continuous and linked by the jump matrix:

My (k;x,t) = M_(k; x, )Y (k; x, 1), k€ X\ {0}.

@ M(k;x,t) > Task — oo.

From the solution of this Riemann-Hilbert problem, define ¢(x, ¢) by:
q(x,1) := 2i lim kM5 (k;x,1).
k—o0

Then, ¢(x, 1) is a solution of the defocusing NLS equation.




The defocusing NLS equation on the half-line

Dirichlet problem. Integrable methodology.
The function ¢(x, ¢) also satisfies g(x, 0) = go(x) and ¢(0,t) = QP(¢) if:

@ The given boundary data {QP, QN} are consistent. That is, QN ()
agrees with (e times) the Neumann boundary value of the solution
of the (well-posed) Dirichlet problem with Dirichlet data Q and ¢j.

@ d(k) # 0 in the closed second quadrant of the complex k-plane.
(Otherwise, poles must be admitted in M(k; x, ) with prescribed
residue data.) J. Lenells recently posted a proof that d(k) # 0 for
consistent boundary data {QP, ON}.

Problem: The spectral transforms {A, B} cannot be calculated from the
Dirichlet data QP alone; we also need to know the Neumann data ON.
Specifying both makes the problem overdetermined/inconsistent, so
q(x,t) (from the RHP) cannot generally satisfy the side-conditions.
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Dirichlet problem. Integrable methodology.

A key role in the theory is therefore played by the global relation, an
identity necessarily satisfied by the spectral transforms {a, b, A, B} for
consistent boundary data that encodes the Dirichlet-to-Neumann map
in the spectral domain.

@ In special situations (so-called linearizable boundary conditions)
the global relation can be effectively solved by means of
symmetries in the complex k-plane.

@ Unfortunately, the only linearizable Dirichlet problem known
corresponds to the homogeneous Dirichlet boundary condition

o (1)

Of course this special case could be handled by the standard
inverse-scattering transform on R by odd extension of gq.

0.
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Iterative approach to the Dirichlet problem.

Since ¢(x,r) from the RHP always satisfies defocusing NLS, consider

(as an alternative to the global relation) an iterative scheme: given

Dirichlet data QP(r) and go(x), define Q) () for ¢ > 0 as an ad-hoc

guess for the unknown Neumann boundary data, and setn =0

@ Set ON(r) = ON(¢), and together with QP(¢) and go(x) calculate the
spectral transforms {a,b,A,B} = {a,b,A,,B,}

© Formulate the RHP with these spectral transforms and solve
(unique solution off a “thin” exceptional set by analytic Fredholm
theory). Obtain ¢ = g,(x, t) solving defocusing NLS.

© Define O, (1) := €dxqn(0,1) for 1 > 0.

©Q Setn:=n+ 1. Goto step 1.

We show that a modification of the first iteration of this scheme gives a

good approximation to the solution of the boundary-value problem in
the semiclassical limit € | 0.
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Guessing ON. Semiclassical approximation of the Dirichlet-to-Neumann map.

How to get a good guess QF (¢) for the Neumann data? Represent
q(x,t) in real phase-amplitude form:

q(x,1) = n(x, )" n(x,1) = [q(x,1)].

Then the defocusing NLS equation can be written exactly as a system:

2 2 92
8o+<(%> pop COn
Ox

and the ratio of Neumann to Dirichlet boundary data takes the form:

_.QN(t) _ —ie Oq

ie On
'0P(1) ~ 4(0,1) dx

n(o,t)a(ov 1), ulxt):= g‘;(x, f).

(0,7) = u(0,1) —
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Guessing ON. Semiclassical approximation of the Dirichlet-to-Neumann map.
Now consider the formal semiclassical limit ¢ | 0:

.ON(1) — u(0,7) — ic @(07 1) ~ u(0,1).

o) 7(0,1) x
But also (from defocusing NLS),
Oo 2 2 €2 8277 N

For Dirichlet data of the form QP (r) := H(1)e'S0/<, H(zr) := |QP (1),
—iQN(t) ~u(0,¢) and () +u(0,1)* +2H(t)* =~ 0
ob(n) ’ o
Assuming that §'(t) < —2H(t)? for t > 0, eliminate u(0, ¢) by

u(0,1) = U(1) := /(1) — 2H(1)2 > .
The semiclassical approximation of the Dirichlet-to-Neumann map is:
0% (1) = Q) (1) := iU Q°(1).
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A modification of the first iteration.

For simplicity we consider zero initial data: go(x) = 0.

We write QP(r) := H(1)e5()/<, where §'(r) = —2H(r)> — U(t)?> and H(:)
and U(-) are suitable given functions (more details soon...). Then

@ a(k) = 1 and b(k) = 0 from the “x-problem” of the Lax pair.

@ With ON(¢) replaced by its formal approximation iU(¢)QP(¢), the
“t-problem” takes the form

dT —2ik? — iH(1)? (2k — U(1))H(1)eS0/¢

EE(Z; k) = (2k N U(t))H(t)e—iS(t)/c ik + iH(t)2 T(t; k).

This can be analyzed by WKB-type methods when ¢ > 0 is small
—> we can accurately and rigorously approximate {Ao(k), Bo(k)}.
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A modification of the first iteration.

Technical conditions on the functions H : R - Rand U : Ry — R:

@ H(t) is real analytic and strictly positive for ¢ > 0.

e H and all derivatives vanish as + — +oo faster than any power of .
e There is some hy > 0 such that H(¢) = hot'/?>(1 + o(1)) and
H'(t) = $hot="/2(1 4 0(1)) as t — 0 with R{r} > 0.

@ U(t) is real analytic for t > 0 and U(r) > 2H(t) 4 ¢ for some § > 0.
e U’ and all derivatives vanish as r — +oo faster than any power of z.

e There is a positive number Uy, such that U(r) = Uy + o(t'/?) and
U'(t) = O(t~"/?) as t — 0 with R{r} > 0.
@ The functions
a(f) == —3U(1) —H(t) and b(r) == —3U(1) + H(?)

each have precisely one critical point in (0, ), a non-degenerate
maximum for b and a non-degenerate minimum for a.
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A modification of the first iteration.

1.0\ b= LU
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A modification of the first iteration.
Rigorous WKB analysis under these assumptions yields:
@ Any zeros of the function dy(k) := Ao(k*)* in the second quadrant
converge to [kq, ks] C R_ in the limit ¢ | 0.
@ T'o(k) := Bo(k*)* /Ao (k*)* = O(e'/?) uniformly for k € iR and for
k < 0 bounded away from [kq, k|-
@ Uniformly for k in compact subsets of (kq, kp),

To(k) = me—mb(l{)ﬁ +0(e)
1-— ‘Fo(k)‘z = e_ZT(k)/E(l +0(e)),

where with s := sgn(k* — k) and 7_ (k) < ¢4 (k) the roots of
(k—a(r))(k —b(z)) (AKA “turning points”),

o
—

)
~—

I

r— (k)
%S(O) + s/ (U(t) — 26))v/(k — a(t)) (k — b(r)) dt
0
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A modification of the first iteration.

Based on these asymptotics, we replace the jump matrices by their
leading approximations, yielding a modified RHP. Let I" be defined on
the real axis by:

(k) = X(ka ko) K)Y (R)e POy (k) = V1 — =270/,
Riemann-Hilbert Problem (modified first iteration)

SeekM : C\ R — C?*2 such that
@ M is analytic taking boundary values M. : R — C>*2 from C..
@ The boundary values are related by the jump condition

- ~ 1 — f‘ k)12 _f k *e—2i9(k;x,t)/6
ML) = M) |5 Dty | keR

@ M(k) — T ask — oc.
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A modification of the first iteration.

Let )
Zf(x, t) =21 lim lez(k).
k—o00

It can be shown that g“(x, ¢) is for each ¢ > 0 an infinitely differentiable
solution of NLS. We prove the following additional results.

Theorem (approximation of the initial condition)

The solution g = ¢°(x,t) of the defocusing nonlinear Schrédinger
equation satisfies

3 (x,0) = O((log(c~")"1?), x>0, e¢—0,

where the error term is uniform on x > x, for each xy > 0.

v

A similar result holds for certain nonzero ¢ as the following corollary (of
the proof) shows. . .
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A modification of the first iteration.

Letr > 0, and let X(r) denote the smallest nonnegative value of x, for
which the inequality x + 4kt — ®'(k) > 0 holds for all k € (kq, kp)
whenever x > xp.

Corollary (existence of a vacuum domain)

Lett > 0. The solution q = g (x,t) satisfies g (x,t) = O((log(¢~'))~1/?)
as e | 0 wheneverx > X(t).

Explicit asymptotes to X(z) for small and large 7 > 0 are, respectively,
hg
Xo(t) := —4kot — TR and X (t) :== —4kqt — Cqlog(r),
0

where C, is a constant given by

1 (U(ta) — 2ka)\/b(ta) — ka
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A modification of the first iteration.

10} ¢ 10t 4
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The vacuum domain x > X(t) (shaded) and the asymptotes x = X (t)
(left, dashed) and x = X (¢) (right, dashed) for H(t) := %tl/ 2sech(t) and
U(t) :== 2 —  tanh(z).
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A modification of the first iteration.

Theorem (approximation of boundary conditions)

Suppose thatt > 0 andt # t,, t # t,. The solution g = ¢“(x,t) of the
defocusing nonlinear Schrédinger equation satisfies

as e | 0, where the error terms are uniform fort in compact
subintervals of (0, +00) \ {ta, 1}

Again, the proof generalizes also for sufficiently small x > 0 as the
following corollary shows. ..
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A modification of the first iteration.

Corollary (existence of a plane-wave domain)

Each point (0, 1y) with ty > 0 and ty # t4,t, has a neighborhood Dy, in
the (x,t)-plane in which there exist unique differentiable functions
a(x,t) and B(x, 1) satisfying a(0,t) = a(z), 5(0,¢) = b(r), and

O ap 86
— — (Ba+ 5) =0, B

BT =0.

—(a+3f)5-

Moreover, ¢ (x,t) = n(x, t)ei”(x”)/ <+ O((log(e"))~'/?) holds uniformly
for (x,t) € D,, as ¢ | 0, where

n(t) == YA —a(nn) and ofx1) = S(1)— /Ox[a@,z)w(y,z)] dy.

v

Note that n(x, ) and o(x, t) satisfy the dispersionless defocusing NLS:

on o On 0o oo N (80

2 = 2n* = 0.
o T foxox o 0 ot 8x> =0
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About the proofs.

The second theorem and its corollary are proved by the Deift-Zhou
steepest descent method for RHPs, specifically using genus zero
g-function techniques. [Another lecture. .. ]

Proving the first theorem and its corollary involves showing that the
RHP for M(k) can be transformed into a “small-norm problem.” i.e., one
for which the jump matrix is nearly 1. An algebraic factorization is
required and technical obstructions arise due to:
@ complicated behavior of the jump matrix factors near k = k, and
k = ky, and
@ non-analyticity of the jump matrix factors at certain points in
(kaa kb)-
The latter analytical issue can be handled using the 0 steepest
descent method, a generalization of the Deift-Zhou method.
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Proof of the “initial-data approximation” theorem.

The jump matrix (on R) is exactly the identity except for k, < k < ky,
where it admits the natural factorization

1— |f(k)’2 _f(k)*e_zie(k;x,z)/e
f‘(k)eﬁ@(k;x,t)/c 1

1 —T(k)*e 20kn/c 1 0
[0 1 f(k)eZie(kEva)/é 1 ke < k < k.

Recall that T'(k) = Y*(k)e2®®)/< with Y (k) = /1 — e~ 27(R)/c = 1. If
0(k; x, 1) — ®(k) is strictly increasing, we should try to deform the
first/second factor into the lower/upper half-plane, “opening a lens”
about the interval [kq, k).

However, we must proceed with care, because there are isolated
points of non-analyticity of ® and 7, and hence of T'(k).
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Proof of the “initial-data approximation” theorem.

Assumptions in force on U and H —>
Important properties of 7 : [kq, ks] — R:

o 7(k) is analytic for k € [kq, ky] \ {ko, koo }, @and is C° near ko and k.
@ 7(k) > 0 holds strictly on (kq, kp).
@ 7(ky) = 7(ky) = 0, while 7/(k,) > 0 and 7/(ks) < 0.

Important properties of ® : [kq, ky] — R:
@ ®(k) is analytic for k € (kq, k) \ {ko}, and is C* near k = k.
@ d'(k) < 0fork, < k < ky with equality only for k = k.

@ & has an analytic continuation &, (®;) into the complex plane from
a right (left) neighborhood of &, (k) satisfying

(I)ajb(k) = (I)(ka,b)+ca,b(k_ka,b) 10g(|k—ka7b‘)+0(k—ka7b), k— ku,b7

where C, = 7/(kq)/(27) > 0and Cy = —7'(kp)/(27) > 0.
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Proof of the “initial-data approximation” theorem.

In particular if the lens about [k,, k] is opened with nonzero acute
angles at the endpoints &, and kg, then

@ I'(k) = O((log(¢~1))~'/?) holds uniformly near &, , along the lens
boundary in C,, and

@ ['(k*)* = O((log(¢~"))~'/2) holds uniformly near k, 5 along the lens
boundary in C_.

The main idea behind this fact is that while the exponential decay of
eT2i®(K)/< js not uniform near the endpoints, the factor

Yo(k) = V1 —e 210/

vanishes like a square root. The net result is uniform (albeit very slow)
decay as ¢ | 0.
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Proof of the “initial-data approximation” theorem.

The factor Y“(k) fails to be analytic at ko, k-. But since Y“(k) — 1 is
exponentially small except near kg, ky,, we can simply “leave it on R” in
the interior of (kq, k) when we open the lens (details coming soon. . .).

The fact that ®’(k) < 0 on (kq, ks) Suggests that we can use this
monotonicity to obtain decay by deforming matrix factors into C..
(that’s what steepest descent is all about). The non-analyticity of ® at
k = ko will be an obstruction.

We obtain an appropriate non-analytic extension of ®(k) into the
complex plane by following the 0 steepest descent method?.

2K. T.-R. McLaughlin and P. D. Miller, Int. Math. Res. Not. 2008, 1-66, 2008.
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Proof of the “initial-data approximation” theorem.

Let k. := R{k} and k; := 3{k}. We first define a non-analytic extension
of ®(k;) by the formula

. 1
Do (key ki) = B(ky) + ik ®' (k;) + 5(iki)2<1>”(kr).

Note that ®(k;, k) is nearly analytic near the real axis k; = 0 in the
sense that

. 1/ 0 )\ - 1
0D (ke, ki) = 3 (81‘ + iak) o ke, ki) = Z(iki)2<1>’”(kr) = O(k?)

because @ is three times continuously differentiable. Also, by Taylor’s
formula,

Do (ke ki) — Po(k) = O(KD), kg < ke < ko
o (kr, ki) — Do (k) = O(K), ko < ke < ko
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Proof of the “initial-data approximation” theorem.

To get the O((log(¢~"))~!/2) bound on T near k, 5, we need the analytic
functions @, y; but we are forced to use a non-analytic extension of
near ko. Smoothly join them with a “bump function” B € C*(R; [0, 1]):

1 —k )
for some small § >0, B(u)=1< ’ |u—ko| <

The extension of ® that we will actually use is then given by the formula

bk k) o= { BP0k k) & (1= Bl ®all), i € (ko ol
T Blke)®olke, ki) 4+ (1 — Blke))®g(k), ke € [k, ko)

Then 9® (k;, k;) = O(k?) holds uniformly for k, € (kq, ky) because:
o B(kr)é%(kr,ki) + OB(k;) - (Do (ke, ki) — Py(K)), ke € [Ko, ko).
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Proof of the “initial-data approximation” theorem.
Now we open lenses. Consider these domains in the complex plane:

Make an explicit substitution M (k) — O(k;, k;) by the following
formulae: in the “bulk”, we set

} I 0
Oke, ki) := M(k) [_eziwu«;x,z)—é(kr,ko)/e 1] , keqt,

1 _ezi((i)(kryki)fe(k;xvt))/6

O(k;, ki) := M(k) [0 X

], ke Q,
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Proof of the “initial-data approximation” theorem.
Now we open lenses. Consider these domains in the complex plane:

Make an explicit substitution M (k) — O(k;, k;) by the following
formulae: near kg, we set

- 1 0
O(krvki) = M(k) |:—Y§ b(k)eZi(O(k;xJ)—Cba’b(k))/e 1:| ke w::b’
~ 1 _Yv6 k eZi(cba,b(k)fe(k;x?t))/c _
O ke, ki) := M(k) [o a6 (k) | } ke wy,
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Proof of the “initial-data approximation” theorem.
Now we open lenses. Consider these domains in the complex plane:

Make an explicit substitution M (k) — O(k;, k;) by the following
formulae: and in the exterior domain, we set

Ok, k) := M(k), k€ Qu.
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Proof of the “initial-data approximation” theorem.

The matrix O has jump continuities across a contour ¥ illustrated here:

It is piecewise analytic except in the shaded region, a strip in the lens
of width 44 centered at ke = ko. O(k:, k;) satisfies the conditions of a
hybrid Riemann-Hilbert-0 problem.
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Proof of the “initial-data approximation” theorem.

Hybrid Riemann-Hilbert-0 Problem
Find a2 x 2 matrix O(k;, k;) with the following properties:

@ O is continuous in each connected component of R? \ ¥ taking
continuous boundary values O+ on each oriented arc of X..

@ On each oriented arc of 3 there is a given and well-defined jump
matrix Jo(k:, ki) such that the boundary values O.. are related
along that arc by the jump condition O (k;, ki) = O_ (ke ki)Jo (kr, ki)

@ On each connected component of R? \ %, there is a given
well-defined continuous matrix function W such that
00 (k;, ki) = O(ke, ki)W (k;, ki) holds.

@ O(ky, ki) — T as (k;, ki) — oo in R,
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Proof of the “initial-data approximation” theorem.

When r = 0 and x > 0, this is a small-norm problem in the sense that:
® [lJo — Iz (s = O((log(¢~"))~"/?) and
® [|W]l o mo\5) = O(0).

These estimates depend on the following facts:

Fact #1: for k, < k < kg,
0 (k;x,0) — &' (k) = x — ®'(k) > x > 0.

This is enough to control all of the analytic exponential factors (decay
follows from the Cauchy-Riemann equations). It also controls the
non-analytic exponential factors, since the exponents are dominated
for small k; (as the lens is sufficiently thin) by the linear terms in &,
which again involve @' (k;).
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Proof of the “initial-data approximation” theorem.

Fact #2: for k bounded away from the endpoints kq, kp, Yg (k) — 1 is
exponentially small as ¢ | 0. This controls Jo — I on the real axis, where
we've “left” Y(k), and on the vertical contour segments alﬁ

Facts #1 and #2 yield the estimate || Jo — I| () = O((log(e~1))~1/2).
Fact #3: from 0®(k;, ki) = O(k?), and the explicit formula
0 0

1Tb(f, ) - 2OGxD-DEk) /e
0 —2ic '8P (k, ki) - AP kek) =0 ("”‘””/1

, ke Qr
W(kraki) = e
’ k € 9_7

0 0

we get an estimate of the form [|W(k;, k)|| < Ke~'kZe=Clkl/< for
k€ QT U Q™. Elsewhere, W vanishes identically. This yields the
estimate [[W|| o ®2\5) = O(¢).
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Proof of the “initial-data approximation” theorem.

We use these estlmates on Jo — I and W to solve the hybrid
Riemann-Hilbert-0 problem in two steps:

@ First, ignore the jump conditions altogether, and solve the “0 part”
of the problem.

@ Then use the solution of the “0 part” as a parametrix and obtain a
standard small-norm Riemann-Hilbert problem for the error.

The “0 parametrix” solves the following problem.
0 Problem

Find a2 x 2 matrix O(k., k;) with the following properties:
@ O :R? — C?*% s continuous.
@ 00(k;, ki) = O(ke, ki)W (k;, ki) holds in the distributional sense.
@ O(ky,k;) — I as (k;, ki) — oo in R2.
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Proof of the “initial-data approximation” theorem.

To solve the 0 problem, we set up an equivalent integral equation
involving the solid Cauchy transform:

O(kra ki) =T+ ICO(kr, ki)

where the action of the integral operator K is given by

/ / / / dA k/ k/
KF (kr, ki) ——// Flky, )Wk, ki) dA(ky, ki) , dA(ke, k) = dky dk.
Q+un- k' —k

The operator norm of K acting on L>°(R?) is easy to estimate because
the Cauchy kernel is locally integrable on R?:

1 A (kL k)
Kl oo (m2)s < =[[Wllzoom2y sup // dA ks, k)
1€ RO = Lo°(R?) Ty § A |k T

and the latter supremum is finite. Hence |||/ g2)s = O(e).



The defocusing NLS equation on the half-line

Proof of the “initial-data approximation” theorem.

lteration shows that O(k;, k;) is uniquely determined from the conditions
of the 0 problem, and that [|O — T|[ ;o g2y = O(¢). In particular O~
exists for sufficiently small e and |0~ — I|| e g2y = O(e).

Now use O (solving the 8 problem) as a parametrix for O (solving the
hybrid Riemann-Hilbert-0 problem). Consider the substitution

E(ke, ki) := O (ke ki)O ke, ki) ™"

As it is true for both factors, E(k;, ki) — 1 as (k:, ki) — 0. Also, by a
direct calculation, one checks that for all k € C\ 3, OE = 0. Therefore
E is sectionally analytic and so we will write E = E(k).



The defocusing NLS equation on the half-line

Proof of the “initial-data approximation” theorem.

The jump of E(k) across the contour X is easily obtained in terms of
the “old” jump matrix J, via conjugation by O:

E, (k) = E_(k)O(ke, ki)Jo (ke, ki)O (ke ki)', k € 3.
Because
@ O=1+0(c)and O~ = I+ O(e) uniformly on %, and
@ Jo =1+ O((log(e~"))~'/?) uniformly on ¥,

E_ (k) = E_(k)(I+ O((log(¢~'))~'/?) holds uniformly on X. Therefore,
for € > 0 sufficiently small, E satisfies the conditions of small-norm
RHP in the L?(X) sense.

By standard arguments, E(k) — I = O((log(e~"))~'/?) as ¢ | 0 and

E; := lim k(E(k) —I) = O((log(¢~"))~"/?).

k—00

Unraveling the relationships M — O — E completes the proof. O]
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Proof of the “vacuum domain” corollary.

Proving the corollary amounts to the observation that the role of x > 0
and ¢ = 0 in the proof was simply to provide the inequality (cf., Fact #1)

0’ (k;x,0) — ®'(k) = x — ®'(k) > x > 0.
More generally, if t > 0, we can still have
0 (k;x,t) — @' (k) = x + 4kt — &' (k) > 0, k€ (kq,kp),

provided that x > 0 is sufficiently large (given ¢). This condition defines
the boundary x = X(r) of the vacuum domain.

Note: if f(-) := —®'(-) is convex, then X(r) may be explicitly given in
terms of the Legendre dual f*:

X(t) :=f"(—41) = [ (=41), >0, f*(p):= sup (pk—f(k)).

ka<k<kp



Conclusion

Semiclassical asymptotics and steepest descent techniques for
Riemann-Hilbert and 9-problems can be combined with the so-called
unified transform method (“inverse-scattering transform for
initial-boundary-value problems”) to produce accurate approximate
solutions of non-homogeneous Dirichlet boundary-value problems for
defocusing NLS without the use of the global relation.

Reference: P. D. Miller and Z.-Y. Qin, “Initial-boundary value problems
for the defocusing nonlinear Schrédinger equation in the semiclassical
limit,” Stud. Appl. Math., 134, 276-362, 2015.

Thank You!



