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Discontinuous Galerkin Methods

• Finite element method for approximating PDE.

• Piecewise polynomial completely discontinuous.
Continuous Galerkin FEM

xk−1 xk xk+1

Discontinuous Galerkin FEM

xk−1 xk xk+1

• Local variational formulation
(element-by-element).

• First introduced in 1973 by Reed and Hill.

• Hyperbolic conservation law by Cockburn and
Shu.

• According the search in Mathscinet, papers
with key words “Discontinuous Galerkin”

• Before 2000, 203 papers;
• 2001-2014, 2357 papers.
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k=1, t=100π, solid line: exact solution;
dashed line / squares: numerical solution
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k=6, t=100π, solid line: exact solution;
dashed line / squares: numerical solution

Figure 1: Transport equation: Comparison of the exact and the RKDG so-

lutions at T = 100π with second order (P 1, left) and seventh order (P 6,

right) RKDG methods. One dimensional results with 40 cells, exact solution

(solid line) and numerical solution (dashed line and symbols, one point per

cell)
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Figure 2: Transport equation: Comparison of the exact and the RKDG so-

lutions at T = 100π with second order (P 1, left) and seventh order (P 6,

right) RKDG methods. Two dimensional results with 40 × 40 cells.
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Advantages of DG methods:

X Wide Range of PDE’s

X Easy handling complicated geometry
and boundary conditions

X Allowing the hanging nodes

X Compact and then parallel efficiency.

X Easy h − p adaptivity;

X Flexible choice of approximation spaces

Disadvantages of DG methods:

× more of degrees of freedom

× Systems of equations difficult to solve

× Techniques under development

Numerical fluxes

Double−valued, need to pick/define one

xk−1 xk xk+ 1

u−
h

u+
h

û h = û (u−
h , u+

h )

̂f(uh) = f̂ (u−
h , u+

h )

Hanging node

Hanging Node

Nonconforming Mesh and Variable Degree
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DG scheme for hyperbolic conservation laws

ut + f (u)x = 0.

Multiplying with a test function

v ∈ Vh = {v : v |Ij ∈ Pk(Ij), j = 1, · · · ,N}

and integrating by parts over a cell Ij = [xj−1/2, xj+1/2], DG scheme:
Find u ∈ Vh such that, for all v ∈ Vh and j = 1, · · · ,N

∫

Ij

utvdx −
∫

Ij

f (u)vxdx + f̂j+ 1
2
v−
j+ 1

2

− f̂j− 1
2
v+
j− 1

2

= 0.

f̂ is the single value monotone numerical flux:

f̂j+ 1
2

= f̂ (u−
j+ 1

2

, u+
j+ 1

2

)

where f̂ (u, u) = f (u)(consistency); f̂ (↑, ↓) (monotonicity) and f̂ is
Lipschitz continuous with respect to both arguments.

Yan Xu, USTC IWIS–MASC, October 19, 2015
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Introduction to local discontinuous Galerkin (LDG) methods:

Generalization of the DG method to PDEs containing higher spatial
derivatives. For example, the heat equation

ut − uxx = 0

with proper boundary and initial conditions.

Yan Xu, USTC IWIS–MASC, October 19, 2015
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A straightforward generalization is replacing f (u) = −ux in the DG
scheme for the conservation law (ut + f (u)x = 0): find u ∈ Vh such that,
for all test functions v ∈ Vh,

∫

Ij

utvdx +

∫

Ij

uxvxdx − ûx j+ 1
2
vj+ 1

2
+ ûx j− 1

2
vj− 1

2
= 0.

Considering that diffusion is isotropic, a nature choice of the flux could
be the central flux

ûx j+ 1
2

=
1

2

(
(ux)−

j+ 1
2

+ (ux)+
j+ 1

2

)

Yan Xu, USTC IWIS–MASC, October 19, 2015
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However, it has been proven in Zhang and Shu, M3AS 03 that the
scheme is

• Consistent with the heat equation

• (very weakly) unstable
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The LDG method for the heat equation (Bassi and Rebay, JCP 97;
Cockburn and Shu, SINUM 98):

• Rewrite the heat equation as

ut − qx = 0, q − ux = 0.

• Find u, q ∈ Vh such that, for all v ,w ∈ Vh,

∫

Ij

utvdx +

∫

Ij

qvx − q̂j+ 1
2
v−
j+ 1

2

+ q̂j− 1
2
v+
j− 1

2

= 0,

∫

Ij

qpdx +

∫

Ij

upx − ûj+ 1
2
p−
j+ 1

2

+ ûj− 1
2
p+
j− 1

2

= 0.

q can be locally solved and eliminated, hence local DG.

Yan Xu, USTC IWIS–MASC, October 19, 2015
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The numerical flux is the following alternated flux

ûj+ 1
2

= u−
j+ 1

2

, q̂j+ 1
2

= q+
j+ 1

2

,

or

ûj+ 1
2

= u+
j+ 1

2

, q̂j+ 1
2

= q−
j+ 1

2

.

Then we have

• L2 stability

• Optimal convergence of O(hk+1) in L2 for Pk elements.

Yan Xu, USTC IWIS–MASC, October 19, 2015
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Table: L2 and L∞ errors and orders of accuracy for the LDG method with
alternated fluxes applied to the heat equation with an initial condition
u(x , 0) = sin(x), t = 1. Third order Runge-Kutta in time with a small
∆t so that time error can be ignored.

k = 1 k = 2

∆x L2 error order L∞ error order L2 error order L∞ error order
2π/20, u 1.58E-03 — 6.01E-03 — 3.98E-05 — 1.89E-04 —
2π/20, q 1.58E-03 — 6.01E-03 — 3.98E-05 — 1.88E-04 —

2π/40, u 3.93E-04 2.00 1.51E-03 1.99 4.98E-06 3.00 2.37E-05 2.99
2π/40, q 3.94E-04 2.00 1.51E-03 1.99 4.98E-06 3.00 2.37E-05 2.99

2π/80, u 9.83E-05 2.00 3.78E-04 2.00 6.22E-07 3.00 2.97E-06 3.00
2π/80, q 9.83E-05 2.00 3.78E-04 2.00 6.22E-07 3.00 2.97E-06 3.00

2π/160, u 2.46E-05 2.00 9.45E-05 2.00 7.78E-08 3.00 3.71E-07 3.00
2π/160, q 2.46E-05 2.00 9.45E-05 2.00 7.78E-08 3.00 3.71E-07 3.00

Yan Xu, USTC IWIS–MASC, October 19, 2015
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Main idea of LDG method for high order derivative equations

• Rewrite the high order derivative term into the proper first
order equations.

• Use the DG method for the first order equations.

• The key point of the method is to design the numerical fluxes
to ensure the stability.

• Odd derivatives equation: upwinding principle.
• Even derivatives equation: alternating fluxes.

Review paper

• Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods
for high-order time-dependent partial differential equations,
Communications in Computational Physics, 7 (2010), pp.
1-46.

Yan Xu, USTC IWIS–MASC, October 19, 2015
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LDG methods for nonlinear dispersive equations

• KdV equation (Yan and Shu SINUM 2002, Xu-Shu CMAME
2007).

• KdV-Burgers equation, Kawahara equation (Xu-Shu, JCM
2004 ).

• Fully nonlinear K (m, n) and K (n, n, n)
equations(Levy-Shu-Yan JCP 2004, Xu-Shu JCM 2004).

• Kadomtsev-Petviashvili equation (Xu-Shu, Physica D 2005).

• Zakharov-Kuznetsov equation (Xu-Shu Physica D 2005,
Xu-Shu CMAME 2007).

• Ito-type coupled KdV equations (Xu-Shu CMAME 2006).

Yan Xu, USTC IWIS–MASC, October 19, 2015
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Kadomtsev-Petviashvili equation
(Physica D, 2005)

Figure 5.9: A two-phase solution, with parameters: b = −1, λ = 0.15, bλ2 + d = −1,

µ1 = µ2 = 0.25, ν1 = −ν2 = 0.25269207053125, ω1 = ω2 = −1.5429032317052, φ1,0 = 0 and

φ2,0 = 0. Periodic boundary condition in both x and y directions in [0, 4π/µ1]× [0, 4π/ν1]. P
2

elements with 160× 160 uniform cells.

27

Zakharov-Kuznetsov equation (Physica
D, 2005)

Figure 5.17: Direct collision of two dissimilar pulses solution for the ZK equation (5.14) with

the initial condition (5.16). c1 = 4, c2 = 1, x1 = 32, y0 = 32, x2 = 40, y2 = 32. Periodic

boundary conditions in both x and y directions in [0, 64]× [0, 64]. P 2 elements with 160×160

uniform cells

36
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LDG methods for phase field models

• Cahn-Hilliard equation (Xia-Xu-Shu JCP 2007, Guo-Xu JSC
2014)

• Allen-Cahn/Cahn-Hilliard system (Xia-Xu-Shu, CICP 2009)

• Functionalized Cahn-Hilliard equation (Guo-Xu-Xu, JSC 2015)

• No-slop-selection thin film model (Xia, JCP 2015)

• Cahn-Hilliard-Hele-Shaw system (Guo-Xia-Xu, JCP 2014)

• Cahn-Hilliard-Brinkman system (Guo-Xu, JCP 2015)

• Phase field crystal equation (Guo-Xu, submitted)

Yan Xu, USTC IWIS–MASC, October 19, 2015
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2D Cahn-Hilliard equation (JSC, 2014)
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Fig. 12 Level sets u = 0.4 (green) and u = 0.45 (blue) of the solvent phase resulting from the FCH

equation implemented with Scheme (4.1) with P2 elements for Example 6.5. a T = 0.1�t = 0.002, b

T = 1.0�t = 0.002, c T = 50.0�t = 0.2, d T = 200.0�t = 1.0

The domain is [−π/2, π/2] × [−π/2, π/2] × [−π/2, π/2] and the boundary conditions393

are (2.6). Numerical results of Scheme (4.1) for P2 approximation are shown in Fig. 10.394

The system experiences rapid mixing of the two components in the early stage, and phase395

separation occurs on nearly the same time scale (the spinodal phase). After a short time, the396

porous structure appears.397

Figure 11 shows the energy trace of the numerical solution and we can see that the energy398

(2.2) of FCH equation decays with respect to time t , which agrees with the theoretical result.399

Example 6.5 We consider the FCH equation (2.5) with400

W (u) =
(u − 1)2

2

(
(u + 1)2

2
− 0.18

)
, (6.5)401
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LDG methods for nonlinear diffusion
equations

• Bi-harmonic equations (Yan-Shu
JSC 2002, Dong-Shu SINUM
2009).

• Kuramoto-Sivashinsky equation
(Xu-Shu, CMAME 2006).

• Surface diffusion of graphs and
Willmore flow of graphs
(Xu-Shu JSC 2009, Ji-Xu
submitted 2009).

• Porous medium equation
(Zhang-Wu JSC 2009).

Kuramoto-Sivashinsky (CMAME 2006)

Example 4.1. We show an accuracy test for the Kuramoto–Sivashinsky equation

ut þ uux þ uxx þ uxxxx ¼ 0 ð4:1Þ

with the exact solution

uðx; tÞ ¼ cþ 15

19

ffiffiffiffiffi
11

19

r
�9 tanhðkðx� ct � x0ÞÞ þ 11tanh3ðkðx� ct � x0ÞÞ
� �

ð4:2Þ

and the boundary condition

uð�30; tÞ ¼ g1ðtÞ; uð30; tÞ ¼ g2ðtÞ; ð4:3Þ

where gi(t) corresponds to the data from the exact solution. Notice that the local discontinuous Galerkin
method allows for an easy implementation of such boundary conditions. The L2 and L1 errors and the
numerical orders of accuracy are contained in Table 4.1. We can see that the method with Pk elements gives
a uniform (k + 1)th order of accuracy in both norms.

Fig. 4.4. Chaotic solution of the Kuramoto–Sivashinsky equation (4.12) with initial condition (4.13). Periodic boundary condition in
[0,32p], P2 elements with two different meshes using N = 300 and N = 600 uniform cells.

Y. Xu, C.-W. Shu / Comput. Methods Appl. Mech. Engrg. 195 (2006) 3430–3447 3441

Yan Xu, USTC IWIS–MASC, October 19, 2015
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LDG methods for Schrödinger equation

• Nonlinear Schrödinger equations (Xu-Shu JCP 2005,
Lu-Cai-Zhang IJAM 2005 )

• Zakharov system (Xia-Xu-Shu JCP 2010)

• Stationary Schrödinger equations (Wang-Shu JSC 2009,
Guo-Xu CICP 2014 )

• Nonlinear Schrödinger-KdV System (Xia-Xu-Shu CICP 2014)

• Nonlinear Schrödinger equation with wave operator (Guo-Xu
JSC 2014)

Yan Xu, USTC IWIS–MASC, October 19, 2015
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2D Schrödinger equation (JCP, 2005)

Table 5

Accuracy test for the NLS equation (3.17) with the plane solution (3.18)

N · N Real part Imaginary part

L2 error Order L1 error Order L2 error Order L1 error Order

p0 10 · 10 2.30E � 01 – 1.08 – 2.16E � 01 – 7.57E � 01 –

20 · 20 1.05E � 01 1.13 4.72E � 01 1.20 1.05E � 01 1.03 4.72E � 01 0.68

40 · 40 4.91E � 02 1.10 2.30E � 01 1.04 4.92E � 02 1.10 2.30E � 01 1.04

80 · 80 2.42E � 02 1.02 1.22E � 01 0.92 2.42E � 02 1.02 1.21E � 01 0.92

p1 10 · 10 1.24E � 01 – 3.43E � 01 – 2.81E � 02 – 9.88E � 02 –

20 · 20 2.82E � 02 2.13 9.87E � 02 1.60 2.82E � 02 2.13 9.43E � 02 1.87

40 · 40 6.70E � 03 2.07 2.50E � 02 1.98 6.71E � 03 2.07 2.45E � 02 1.95

80 · 80 1.64E � 03 2.03 5.93E � 03 2.08 1.64E � 03 2.03 6.04E � 03 2.02

p2 10 · 10 7.12E � 03 – 5.69E � 02 – 6.95E � 03 – 5.76E � 02 –

20 · 20 6.83E � 04 3.38 6.89E � 03 3.04 7.15E � 04 3.28 7.01E � 03 3.04

40 · 40 7.96E � 05 3.10 8.75E � 04 2.98 7.99E � 05 3.16 9.52E � 04 2.88

80 · 80 9.11E � 06 3.13 1.02E � 04 3.11 9.10E � 06 3.13 1.04E � 04 3.19

p3 10 · 10 1.48E � 03 – 8.40E � 03 – 1.45E � 03 – 7.19E � 03 –

20 · 20 9.16E � 05 4.02 6.01E � 04 3.81 9.23E � 05 3.97 5.41E � 04 3.73

40 · 40 5.66E � 06 4.02 4.72E � 05 3.67 5.64E � 06 4.03 3.18E � 05 4.09

80 · 80 3.53E � 07 4.00 2.14E � 06 4.47 3.52E � 07 4.00 2.33E � 06 3.77

b = 2, A = c = 1. Periodic boundary condition in [0,2p]. Non-uniform meshes with N · N cells at time t = 1.

Fig. 11. The singular solution of Eq. (3.19) with initial condition (3.20). Periodic boundary condition in [0,2p]. P2 elements with

120 · 120 uniform cells.

Y. Xu, C.-W. Shu / Journal of Computational Physics 205 (2005) 72–97 95

2D Zakharov system (JCP, 2010)

Yan Xu, USTC IWIS–MASC, October 19, 2015
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LDG methods for phase transition problems

1D phase transition in solid (JSC 2014)
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Figure 15: Coalescence of two bubbles for the isothermal NSK equations
with Re = 512,We = 65500 on a mesh of 2562 elements. Piecewise linear
polynomials are used. The Van der Waals EOS is chosen as (3), θ = 0.85.
The initial condition is (34) with ρ1 = 0.05, ρ2 = 0.65.
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LDG methods for other equations

• Degasperis-Procesi (DP) equation
(Xu-Shu, CICP 2011).

ut − uxxt + 4uux = 3uxuxx + uuxxx

• Camassa-Holm (CH) equation
(Xu-Shu, SINUM 2008).

ut − uxxt + 3uux = 2uxuxx + uuxxx .

• Hunter-Saxton (HS) equation
(Xu-Shu, SIJSC 2008 and JCM 2010).

uxxt + 2uxuxx + uuxxx = 0

Degasperis-Procesi (CICP)

x

u
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Family of third order dispersive PDE conservation laws

ut + c0ux + κuxxx − ε2utxx = (c1u
2 + c2u

2
x + c3uuxx)x ,

where κ, ε, c0, c1, c2, and c3 are real constants.

Integrability

There are only three equations that satisfy the asymptotic
integrability condition within this family

• KdV equation (ε = c2 = c3 = 0).

• Camassa-Holm equation (c1 = −3c3
2ε2 , c2 = c3

2 ).

• Degasperis-Procesi (c1 = −2c3
2ε2 , c2 = c3).

Yan Xu, USTC IWIS–MASC, October 19, 2015
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Camassa-Holm (CH) equation

ut − uxxt + 3uux = 2uxuxx + uuxxx .

Degasperis-Procesi (DP) equation

ut − uxxt + 4uux = 3uxuxx + uuxxx

Yan Xu, USTC IWIS–MASC, October 19, 2015
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Energy

Camassa-Holm (CH) equation

H2(u) =

∫

R
(u2 + u2

x )dx

Degasperis-Procesi (DP) equation

E2(u) =

∫

R
(u − uxx)vdx , 4v − ∂2

xv = u

Yan Xu, USTC IWIS–MASC, October 19, 2015



Introduction LDG method of CH equation LDG method for the DP equation Numerical results Conclusion

Solution

Camassa-Holm (CH) equation

• Peaked Solution

• No shock wave solutions with initial data u0 ∈ H1(R)

Degasperis-Procesi (DP) equation

• Peaked Solution

• Shock wave solutions

Yan Xu, USTC IWIS–MASC, October 19, 2015
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Camassa-Holm (CH) equation

ut − uxxt + 2κux + 3uux = 2uxuxx + uuxxx ,

where κ is a constant.

• u representing the free surface of water over a flat bed.

• A model for the propagation of the unidirectional gravitational
waves in a shallow water approximation.

• It is completely integrable.

• It models wave breaking for a large class of initial data.

Energy

H2(u) =

∫

R
(u2 + u2

x )dx

Yan Xu, USTC IWIS–MASC, October 19, 2015
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Numerical challenge

• Such nonlinearly dispersive partial differential equations
support peakon solutions.

• The lack of smoothness at the peak of the peakon introduces
high-frequency dispersive errors into the calculation.

• It is a challenge to design stable and high-order accurate
numerical schemes for solving this equation.

Yan Xu, USTC IWIS–MASC, October 19, 2015
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Equation

u − uxx = q, (1)

qt + f (u)x =
1

2
(u2)xxx −

1

2
((ux)2)x (2)

Yan Xu, USTC IWIS–MASC, October 19, 2015
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The LDG method

• we rewrite the equation (1) as a first order system:

u − rx = q,

r − ux = 0.

• q is assumed known and we would want to solve for u. The
LDG method is formulated as follows: find uh, rh ∈ Vh such
that, for all test functions ρ, φ ∈ Vh,

∫

Ij

uhρdx +

∫

Ij

rhρxdx − (r̂hρ
−)j+ 1

2
+ (r̂hρ

+)j− 1
2

=

∫

Ij

qhρdx ,

∫

Ij

rhφdx +

∫

Ij

uhφxdx − (ûhφ
−)j+ 1

2
+ (ûhφ

+)j− 1
2

= 0.

• Numerical flux: r̂h = r−h , ûh = u+
h .
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The LDG method (continued)

• For the equation (2), we can also rewrite it into a first order
system:

qt + f (u)x − px + B(r)x = 0,

p − (b(r)u)x = 0,

r − ux = 0,

where B(r) = 1
2 r

2 and b(r) = B ′(r) = r .
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The LDG method (continued)

• Now we can define a local discontinuous Galerkin method,
resulting in the following scheme: find qh, ph, rh ∈ Vh such
that, for all test functions ϕ, ψ, η ∈ Vh,

∫

Ij

(qh)tϕdx −
∫

Ij

(f (uh)− ph + B(rh))ϕxdx

+ ((f̂ − p̂h + B̂(rh))ϕ−)j+ 1
2
− ((f̂ − p̂h + B̂(rh))ϕ+)j− 1

2
= 0,

∫

Ij

phψdx +

∫

Ij

b(rh)uhψxdx − (b̂(rh)ũhψ
−)j+ 1

2
+ (b̂(rh)ũhψ

+)j− 1
2

= 0,

∫

Ij

rhφdx +

∫

Ij

uhηxdx − (ûhη
−)j+ 1

2
+ (ûhη

+)j− 1
2

= 0.
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Numerical flux

• Alternate numerical fluxes

p̂h = p−h , ûh = u+
h , B̂(rh) = B(r−h ), ũh = u+

h .

• Central numerical flux

b̂(rh) =
B(r+

h )− B(r−h )

r+
h − r−h

• f̂ (u−h , u
+
h )

• Central numerical flux:

f̂ (u−h , u
+
h ) =

1

2
(f (u−h ) + f (u+

h )),

• Lax-Friedrichs flux

f̂ (u−h , u
+
h ) =

1

2
(f (u−h )+f (u+

h )−α(u+
h −u−h )), α = max |f ′(uh)|
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Algorithm flowchart

• We obtain qh in the following matrix form

qh = Auh.

• we obtain the LDG discretization of the residual
−f (u)x + 1

2 (u2)xxx − 1
2 ((ux)2)x in the vector form

(qh)t = res(uh).

• We then combine the above two equation to obtain

A(uh)t = res(uh).

• We use a time discretization method to solve

(uh)t = A−1res(uh).
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L2 stability of the LDG method

The solution to the LDG schemes for the Camassa-Holm equation
satisfies the L2 stability

• f̂ (u−h , u
+
h ): central numerical flux

d

dt

∫ L

0
(u2

h + r2
h )dx = 0.

• f̂ (u−h , u
+
h ): Lax-Friedrichs flux

d

dt

∫ L

0
(u2

h + r2
h )dx ≤ 0.
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The main error estimate result

Let u be the exact solution of the Camassa-Holm equation, which
is sufficiently smooth with bounded derivatives, and assume
f ∈ C 3. For regular triangulations of I = (0, 1), if the finite
element space Vh is the piecewise polynomials of degree k ≥ 2,
then for small enough h there holds the following error estimates

‖u − uh‖2 + ‖r − rh‖2 ≤ Ch2k , (3)

where the constant C depends on the final time T , k , ‖u‖k+1,
‖r‖k+1 and the bounds on the derivatives |f (m)|, m = 1, 2, 3. Here
‖u‖k+1 and ‖r‖k+1 are the maximum over 0 ≤ t ≤ T of the
standard Sobolev k + 1 norm in space.
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Remark

• Although we could not obtain the optimal error estimates
O(hk+1) for u due to some extra boundary terms arising from
high order derivatives, numerical examples verify the optimal
order O(hk+1) for u.

• For the solution rh, our numerical results indicate that k-th
order accuracy is sharp.
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Main difficulty of the proof

• Nonlinear term.

• Lack of control on some of the jump terms at cell boundaries
for high order derivatives term.

• Special projection is introduce to handle troublesome jump
terms in the error equation.

• It is more challenging to perform L2 a priori error estimates for
nonlinear PDEs with high order derivatives than for first order
hyperbolic PDEs

Yan Xu, USTC IWIS–MASC, October 19, 2015
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Degasperis-Procesi equation

ut − utxx + 4f (u)x = f (u)xxx ,

where f (u) = 1
2u

2.

• DP equation support peakon solutions and shock solutions.

• The lack of smoothness of the solution introduces more
difficulty in the numerical computation.
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Energy

Camassa-Holm (CH) equation

H2(u) =

∫

R
(u2 + u2

x )dx

Degasperis-Procesi (DP) equation

E2(u) =

∫

R
(u − uxx)vdx , 4v − ∂2

xv = u
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Numerical difficulty

• Conservation laws of the DP equation are much weaker than
those of the CH equation

• The conservation laws Ei (u) can not guarantee the
boundedness of the slope of a wave in the L2-norm.

• There is no way to find conservation laws controlling the
H1-norm, which plays a very important role in studying the
CH equation.
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L2 stability

• Auxiliary variable v which satisfies the following equation

4v − vxx = u.

• Another form of the energy E2(u)

d

dt

∫

Ω

(
2v2 +

5

2
(vx)2 +

1

2
(vxx)2

)
dx = 0.

• L2 stability of u, i.e.

‖u‖L2(R) 6 2
√

2‖u0‖L2(R).
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LDG scheme (I) based on dispersive form

We write the DP equation in the following form

u − uxx = q, (4)

qt + 4f (u)x = f (u)xxx . (5)

Yan Xu, USTC IWIS–MASC, October 19, 2015
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The LDG method (I) continued

• we rewrite the equation (4) as a first order system:

q − rx = 0,

r − ux = 0.

• q is assumed known and we would want to solve for u. The
LDG method is formulated as follows: find uh, rh ∈ Vh such
that, for all test functions ρ, φ ∈ Vh,

∫

Ij

qhρdx +

∫

Ij

rhρxdx − (r̂hρ
−)j+ 1

2
+ (r̂hρ

+)j− 1
2

= 0,

∫

Ij

rhφdx +

∫

Ij

uhφxdx − (ûhφ
−)j+ 1

2
+ (ûhφ

+)j− 1
2

= 0.

• Numerical flux: r̂h = r−h , ûh = u+
h .
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The LDG method (I) continued

For the equation (5), we can also rewrite it into a first order
system:

qt + 4s − px = 0,

p − sx = 0,

s − f (u)x = 0.
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The LDG method (I) continued

Find qh, ph, sh ∈ Vh such that, ∀ϕ, ψ, η ∈ Vh,

∫

Ij

(qh)tϕdx +

∫

Ij

4shϕdx +

∫

Ij

phϕxdx − (p̂hϕ
−)j+ 1

2
+ (p̂hϕ

+)j− 1
2

= 0,

∫

Ij

phψdx +

∫

Ij

shψxdx − (ŝhψ
−)j+ 1

2
+ (ŝhψ

+)j− 1
2

= 0,

∫

Ij

shηdx +

∫

Ij

f (uh)ηxdx − (f̂ η−)j+ 1
2

+ (f̂ η+)j− 1
2

= 0.

The numerical fluxes are chosen as

p̂h = p−h , ŝh = s+
h ,

and f̂ (u−h , u
+
h ) is a central flux or Lax-Friedrichs flux.
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Algorithm flowchart (I)

• We obtain qh in the following matrix form

qh = Auh.

• we obtain the LDG discretization of the residual
4f (u)x − f (u)xxx in the vector form

(qh)t = res(uh).

• We then combine the above two equation to obtain

A(uh)t = res(uh).

• We use a time discretization method to solve

(uh)t = A−1res(uh).
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LDG scheme (II) based on hyperbolic-elliptic form

We write the DP equation in the following form

ut + f (u)x + p = 0,

p − pxx = 3f (u)x .

We rewrite the equation as a first order system:

ut + q + p = 0,

p − sx = 3q,

s − px = 0,

q − f (u)x = 0.

Yan Xu, USTC IWIS–MASC, October 19, 2015
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LDG scheme (II) continued

Find uh, sh, ph, qh ∈ Vh such that, ∀ϕ, ψ, η ∈ Vh,

∫

Ij

(uh)tϕdx +

∫

Ij

(qh + ph)ϕdx = 0,

∫

Ij

phψdx +

∫

Ij

shψxdx − (ŝhψ
−)j+ 1

2
+ (ŝhψ

+)j− 1
2

= 3

∫

Ij

qhψdx ,

∫

Ij

shηdx +

∫

Ij

phηxdx − (p̂hη
−)j+ 1

2
+ (p̂hη

+)j− 1
2

= 0,

∫

Ij

qhρdx +

∫

Ij

f (uh)ρxdx − (f̂ ρ−)j+ 1
2

+ (f̂ ρ+)j− 1
2

= 0.

Numerical fluxes are chosen as

p̂h = p−h , ŝh = s+
h .

Here f̂ (u−h , u
+
h ) is a central flux or Lax-Friedrichs flux.
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Algorithm flowchart (II)

• Given the solution uh at time level n, we first get qh.

qh = res(uh).

• We obtain ph in the following matrix form

ph = 3A−1qh.

• Using the solution qh, ph to computing discretization of the
residual p + q, then we obtain

(uh)t = qh + ph.

Any standard ODE solvers can be used here, for example the
Runge-Kutta methods.
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Stability of the LDG method (I) and (II)

• Energy stability of the solution vh
• f̂ (u−h , u

+
h ): central numerical flux

d

dt

∫

Ω

(
2v2

h +
5

2
w2
h +

1

2
z2
h

)
dx = 0.

• f̂ (u−h , u
+
h ): Lax-Friedrichs flux

d

dt

∫

Ω

(
2v2

h +
5

2
w2
h +

1

2
z2
h

)
dx ≤ 0.

where wh and zh are approximation of vx and vxx .

• L2 stability of solution uh

‖uh‖L2(Ω) ≤ 2
√

2‖u0‖L2(Ω).

Yan Xu, USTC IWIS–MASC, October 19, 2015



Introduction LDG method of CH equation LDG method for the DP equation Numerical results Conclusion

Total variation bounded property for the P0 case

TVM(unh) 6 exp(CT )TVM(u0),

where TVM(uh) =
J∑

j=1
|∆+uj |.
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Smooth solution

Smooth traveling waves are solution of the form

u(x , t) = φ(x − ct)

where φ is solution of second-order ordinary differential equation

φxx = φ− α

(φ− c)2
.

α = c = 3. The initial conditions for φ is

φ(0) = 1,
dφ

dx
(0) = 0.

It gives rise to a smooth traveling wave with period
a ' 6.46954603635.
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Table: Accuracy test for the CH equation. Periodic boundary condition.
Uniform meshes with N cells at time t = 0.5.

u − uh r − rh
N L2 error order L∞ error order L2 error order L∞ error order
10 1.42E-01 – 3.08E-01 – 1.42E-01 – 3.08E-01 –

P0 20 7.95E-02 0.84 1.77E-01 0.80 7.95E-02 0.83 1.77E-01 0.57
40 4.23E-02 0.91 9.41E-01 0.91 4.23E-02 0.94 9.41E-02 0.87
80 2.18E-02 0.95 4.83E-02 0.96 2.18E-02 0.98 4.83E-02 0.97
10 1.16E-02 – 6.63E-02 – 1.16E-02 – 6.63E-02 –

P1 20 3.12E-03 1.90 1.86E-02 1.84 3.12E-03 0.68 1.86E-02 0.24
40 8.05E-04 1.95 4.76E-03 1.96 8.05E-04 0.85 4.76E-03 0.63
80 2.04E-04 1.98 1.19E-02 2.00 2.04E-04 0.93 1.19E-03 0.87
10 1.41E-03 – 6.75E-03 – 1.41E-03 – 6.75E-03 –

P2 20 1.49E-04 3.24 9.06E-04 2.90 1.49E-04 2.64 9.06E-04 2.64
40 1.70E-05 3.13 9.85E-05 3.20 1.70E-05 2.06 9.85E-05 1.45
50 8.95E-06 2.88 4.96E-05 3.07 8.95E-06 1.95 4.96E-05 1.77
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Peakon solution

In the single peak case, the initial condition is

u0(x) =





c

cosh(a/2)
cosh(x − x0), |x − x0| ≤ a/2,

c

cosh(a/2)
cosh(a− (x − x0)), |x − x0| > a/2,

where x0 is the position of the trough and a is the period. We
present the wave propagation for the CH equation with parameters
c = 1, a = 30 and x0 = −5. The computational domain is [0, a].
P5 element with N = 320 cells.
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Two-peakon interaction

In this example we consider the two-Peakon interaction of the CH
equation with the initial condition

u0(x) = φ1(x) + φ2(x),

where

φi (x) =





ci
cosh(a/2)

cosh(x − xi ), |x − xi | ≤ a/2,

ci
cosh(a/2)

cosh(a− (x − xi )), |x − xi | > a/2,

i = 1, 2.

The parameters are c1 = 2, c2 = 1, x1 = −5, x2 = 5, a = 30. The
computational domain is [0, a]. P5 element with N = 320 cells.
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Three-peakon interaction

In this example we consider the three-Peakon interaction of the CH
equation with the initial condition

u0(x) = φ1(x) + φ2(x) + φ3(x),

where φi , i = 1, 2, 3 are defined as before. The parameters are
c1 = 2, c2 = 1, c3 = 0.8, x1 = −5, x2 = −3, x3 = −1, a = 30.
The computational domain is [0, a]. P5 element with N = 320
cells.
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Solution with a discontinuous derivative

In this example we consider a initial data function u0 which has a
discontinuous derivative. The initial condition is

u0(x) =
10

(3 + |x |)2
.

The computational domain is [−30, 30]. P2 element with
N = 640.
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Break up of the plateau traveling wave

A cut-off peakon, i.e. a plateau function u(x , t) = φ(x − ct) with

φ(x) =





cex+k , x ≤ −k,
c , |x | ≤ k ,
ce−x+k , x ≥ k.

We put c = 0.6 and k = 5. The computational domain is
[−40, 40]. P2 element with N = 800 cells.
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Accuracy test

Table: Accuracy test for the DP equation with the exact solution
u(x , t) = ce−|x−ct|. Periodic boundary condition. c = 0.25. Uniform
meshes with N cells at time t = 1.

Scheme (I) Scheme (II)
N L2 error order L∞ error order L2 error order L∞ error order
20 6.62E-03 – 6.84E-02 – 6.62E-03 – 6.84E-02 –

p0 40 1.98E-03 1.74 2.18E-02 1.65 1.98E-03 1.74 2.18E-02 1.65
80 8.56E-04 1.21 1.02E-02 1.09 8.56E-04 1.21 1.02E-02 1.09

160 4.76E-04 0.85 6.39E-03 0.68 4.76E-04 0.85 6.39E-03 0.68
20 2.31E-03 – 3.19E-02 – 2.31E-03 – 3.19E-02 –

p1 40 1.73E-04 3.74 2.42E-03 3.71 1.73E-04 3.74 2.43E-03 3.71
80 3.92E-05 2.14 5.31E-04 2.19 3.92E-05 2.14 5.31E-04 2.19

160 1.08E-05 1.86 1.88E-04 1.50 1.08E-05 1.86 1.88E-04 1.50
20 3.90E-04 – 6.61E-03 – 3.90E-04 – 6.61E-03 –

p2 40 3.35E-05 3.54 5.25E-04 3.93 3.35E-05 3.54 4.33E-04 3.93
80 4.07E-06 3.04 5.25E-05 3.04 4.07E-06 3.04 5.25E-05 3.04

160 5.77E-07 2.82 7.13E-06 2.88 5.77E-07 2.82 7.13E-06 2.88
10 1.49E-03 – 1.77E-02 – 1.49E-03 – 1.77E-02 –

p3 20 1.51E-04 3.30 2.69E-03 2.72 1.51E-04 3.30 2.69E-03 2.72
40 7.64E-06 4.30 1.32E-04 4.35 7.64E-06 4.31 1.32E-04 4.36
80 1.60E-07 5.58 2.13E-06 5.95 1.60E-07 5.58 2.13E-06 5.95
10 7.07E-03 – 7.09E-02 – 7.07E-03 – 7.09E-02 –

p4 20 1.72E-04 5.36 2.75E-03 4.69 1.72E-04 5.36 2.76E-03 4.68
40 4.68E-06 5.20 8.45E-05 5.02 4.68E-06 5.20 8.45E-05 5.03
80 8.30E-08 5.82 1.31E-06 6.01 8.30E-08 5.82 1.31E-06 6.01
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Peakon solution
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Figure: The peakon profile of the DP equation with the exact solution
u(x , t) = e−|x−t|. Periodic boundary condition in [−40, 40]. P4 elements
and a uniform mesh with N = 228 cells.
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Two-peakon interaction

x

u

-20 0 20
-2

-1.5

-1

-0.5

0

t=0

x

u

-40 -20 0 20 40
-2

-1.5

-1

-0.5

0

Scheme (I)
Scheme (II)

t=8

x

u

-40 -20 0 20 40
-2

-1.5

-1

-0.5

0

Scheme (I)
Scheme (II)

t=10

x

u

-40 -20 0 20 40
-2

-1.5

-1

-0.5

0

Scheme (I)
Scheme (II)

t=16

Figure: The two-anti-peakon interaction of the DP equation. Periodic
boundary condition in [−40, 40]. P3 elements and a uniform mesh with
N = 512 cells.
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Shock peakon solution
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Figure: Shock peakon solution of the DP equation with the exact
solution u(x , t) = −sign(x)e−|x|/(1 + t). Periodic boundary condition in
[−30, 30]. P4 elements and a uniform mesh with N = 228 cells.
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Shock formation
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Figure: Shock formation of the DP equation with the initial condition
u0(x) = e0.5x2

sin(πx). Periodic boundary condition in [−2, 2]. P3

elements and a uniform mesh with N = 100 cells.
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Peakon and anti-Peakon interaction (Symmetric)
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Figure: Symmetric peak and antipeak interaction of the DP equation.
Periodic boundary condition in [−25, 25]. P3 elements and a uniform
mesh with N = 256 cells.
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Peakon and anti-Peakon interaction (Nonsymmetric)
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Figure: Nonsymmetric peak and antipeak interaction of the DP
equation. Periodic boundary condition in [−25, 25]. P3 elements and a
uniform mesh with N = 256 cells.
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Triple interaction
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Figure: Peakon, shock peakon and anti-peakon of the DP equation.
Periodic boundary condition in [−25, 25]. P3 elements and a uniform
mesh with N = 256 cells.
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Conclusion

• LDG methods to solve the nonlinear equation.

• Stability is proven for the schemes for general solutions .

• Numerical examples are given to illustrate the accuracy and
capability of the methods.

Future work

• Total variation bounded property for the high order case.

• a priori error estimates of numerical solutions.
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