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Discontinuous Galerkin Methods 1D Transport

e Finite element method for approximating PDE. e remames

numerical soluion

e Piecewise polynomial completely discontinuous. ||

Continuous Galerkin FEM Discontinuous Galerkin FEM o]
o

o

o

o

— o

Local variational formulation

(element-by-element).
First introduced in 1973 by Reed and Hill.

Hyperbolic conservation law by Cockburn and
Shu.

According the search in Mathscinet, papers
with key words “Discontinuous Galerkin”

e Before 2000, 203 papers;
e 2001-2014, 2357 papers.
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Numerical fluxes
Advantages of DG methods:
Double-valued, need to pick/define one

v" Wide Range of PDE's f(/u-;) _ f(u;,u:)

v Easy handling complicated geometry Up =1 (up,u))
and boundary conditions

Allowing the hanging nodes

Compact and then parallel efficiency.

Easy h — p adaptivity; - ' '

NENENE

Flexible choice of approximation spaces Hanging node

Nonconforming Mesh and Variable Degree
Disadvantages of DG methods:

x more of degrees of freedom

% Systems of equations difficult to solve

x Techniques under development

Yan Xu, USTC IWIS-MASC, October 19, 2015




DG scheme for hyperbolic conservation laws

us + f(U)X =0.
Multiplying with a test function

v E Vh:{v:v|/j€Pk(lj),j:1,~~,N}

and integrating by parts over a cell ; = [xj_1/2,Xj;1/2], DG scheme:

Find u € V}, such that, forallve Vyand j=1,--- /N

/Iutvdx—/f u)vyedx + fiy %v;% _

J

<y
NI=
<=
(ST
Il
<

f is the single value monotone numerical flux:

hy
¥
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where f(u, u) = f(u)(consistency); £(1,]) (monotonicity) and f is

Lipschitz continuous with respect to both arguments.
Yan X4, USTC IWIS-MASC, October 19, 2015
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Introduction to local discontinuous Galerkin (LDG) methods:

Generalization of the DG method to PDEs containing higher spatial
derivatives. For example, the heat equation

U — Uy =0

with proper boundary and initial conditions.
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A straightforward generalization is replacing f(u) = —uy in the DG

scheme for the conservation law (u; + f(u)x = 0): find u € V} such that,
for all test functions v € V,

/utvdx+/uxvxdx—13}<j+%\/j+%—i—ﬁ}j_
I’ I

i

Nl

Considering that diffusion is isotropic, a nature choice of the flux could
be the central flux

1
S~ - +
ij+% = 5 <(Ux)j+% +(uX J+%>
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However, it has been proven in Zhang and Shu, M®AS 03 that the
scheme is

o Consistent with the heat equation

o (very weakly) unstable
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The LDG method for the heat equation (Bassi and Rebay, JCP 97;
Cockburn and Shu, SINUM 98):

e Rewrite the heat equation as
ur—qx =0, gqg—u=0.

e Find u, g € V} such that, for all v,w € V,,

usvdx + v o, +8§ vl =0
/Ij t /Ijq X qJJ,- % j—3 J—% 9
/qudx—i—/lupx — uj+%pj_ 1 + 1Py = 0.
/ I
g can be locally solved and eliminated, hence local DG.
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The numerical flux is the following alternated flux

A — A +
u,, 1 =u. 1 =
J+§ j %7 j+3 qJ_;’_%?
or
~ _ + A~ _ —
Yrs = Yip 943 = 94y

Then we have
o [2 stability

e Optimal convergence of O(h**1) in L? for P* elements.
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Table: L2 and L™ errors and orders of accuracy for the LDG method with
alternated fluxes applied to the heat equation with an initial condition
u(x,0) = sin(x), t = 1. Third order Runge-Kutta in time with a small
At so that time error can be ignored.

k=1 k=2
Ax 12 error order L°° error order 12 error order L°° error order
27 /20, u 1.58E-03 — 6.01E-03 — 3.98E-05 — 1.89E-04 —
27 /20, q 1.58E-03 — 6.01E-03 — 3.98E-05 — 1.88E-04

[ 2m/40,u [ 3.93E-04 [ 2.00 | 151E-03 | 1.99 [ 498E-06 | 3.00 | 237E-05 | 299 |
[ 27/40,q | 3.04E-04 | 2.00 | 15IE-03 | 1.09 | 4.98E-06 | 3.00 | 2.37E-05 | 2.99 |
[ 27/80, u | 9.83E-05 | 2.00 | 3.78E-04 | 2.00 | 6.22E-07 | 3.00 | 2.07E-06 | 3.00 ]
[ 27/80,q | 983E05 | 2.00 | 3.78E-04 | 2.00 | 6.22E:07 | 3.0 | 2.07E-06 | 3.00 |
[ 27/160, u | 2.46E-05 | 2.00 | O.45E-05 | 2.00 | 7.78E-08 | 3.00 | 3.71E-07 | 3.00 ]
[ 27/160, g | 2.46E-05 | 2.00 | O.45E-05 | 2.00 | 7.78E-08 | 3.00 | 3.71E-07 | 3.00 |
***.‘h‘; A7)
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Main idea of LDG method for high order derivative equations

e Rewrite the high order derivative term into the proper first
order equations.

e Use the DG method for the first order equations.

e The key point of the method is to design the numerical fluxes
to ensure the stability.

e Odd derivatives equation: upwinding principle.
e Even derivatives equation: alternating fluxes.

Review paper
e Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods
for high-order time-dependent partial differential equations,
Communications in Computational Physics, 7 (2010), pp.

1-46. JiNA
LYY LY
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LDG methods for nonlinear dispersive equations

e KdV equation (Yan and Shu SINUM 2002, Xu-Shu CMAME
2007).

e KdV-Burgers equation, Kawahara equation (Xu-Shu, JCM
2004 ).

e Fully nonlinear K(m, n) and K(n, n, n)
equations(Levy-Shu-Yan JCP 2004, Xu-Shu JCM 2004).

o Kadomtsev-Petviashvili equation (Xu-Shu, Physica D 2005).

e Zakharov-Kuznetsov equation (Xu-Shu Physica D 2005,
Xu-Shu CMAME 2007).

e lto-type coupled KdV equations (Xu-Shu CMAME 2006).
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Kadomtsev-Petviashvili equation Zakharov-Kuznetsov equation (Physica
(Physica D, 2005) D, 2005)
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LDG methods for phase field models

e Cahn-Hilliard equation (Xia-Xu-Shu JCP 2007, Guo-Xu JSC
2014)

e Allen-Cahn/Cahn-Hilliard system (Xia-Xu-Shu, CICP 2009)

e Functionalized Cahn-Hilliard equation (Guo-Xu-Xu, JSC 2015)
¢ No-slop-selection thin film model (Xia, JCP 2015)

e Cahn-Hilliard-Hele-Shaw system (Guo-Xia-Xu, JCP 2014)

e Cahn-Hilliard-Brinkman system (Guo-Xu, JCP 2015)

e Phase field crystal equation (Guo-Xu, submitted)
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2D Cahn-Hilliard equation (JSC, 2014) 3D Functionalized Cahn-Hilliard (JSC,
2015)
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LDG methods for nonlinear diffusion Kuramoto—Sivashinsky (CMAME 2006)

equations

n=300

e Bi-harmonic equations (Yan-Shu - i\

JSC 2002, Dong-Shu SINUM
2009). -

e Kuramoto-Sivashinsky equation

(Xu-Shu, CMAME 2006). i

e Surface diffusion of graphs and
Willmore flow of graphs

(Xu-Shu JSC 2009, Ji-Xu

submitted 2009). -

e Porous medium equation
(Zhang-Wu JSC 2009).

75 700
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LDG methods for Schroédinger equation

¢ Nonlinear Schrodinger equations (Xu-Shu JCP 2005,
Lu-Cai-Zhang [JAM 2005 )

e Zakharov system (Xia-Xu-Shu JCP 2010)

e Stationary Schrodinger equations (Wang-Shu JSC 2009,
Guo-Xu CICP 2014 )

¢ Nonlinear Schrédinger-KdV System (Xia-Xu-Shu CICP 2014)

e Nonlinear Schrodinger equation with wave operator (Guo-Xu
JSC 2014)
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2D Schrédinger equation (JCP, 2005) 2D Zakharov system (JCP, 2010)
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LDG methods for phase transition problems

1D phase transition in solid (JSC 2014)  Navier-Stokes-Korteweg (JCP, 2015)
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LDG methods for other equations Degasperis-Procesi (CICP)

e Degasperis-Procesi (DP) equation N

(Xu-Shu, CICP 2011). ’j'mmj\r

U — Uxxt + AUty = Uy Uy + Ulixxx

Camassa-Holm (SINUM)
e Camassa-Holm (CH) equation

(Xu-Shu, SINUM 2008). JM
U — Uxxt + 3UUX = 2Uxuxx + Ulyxx- k . " "

¢ Hunter-Saxton (HS) equation Hunter-Saxton (SIJSC)
(Xu-Shu, SIJSC 2008 and JCM 2010).

Usxt + 2Ux Uy + Ulsy = 0

-

Yan Xu, USTC IWIS-MASC, October 19, 2015



Family of third order dispersive PDE conservation laws

Up + oy + Ko — € U = (CLUP + QU2 + C3UL)x,

where k, €, ¢y, ¢1, ¢, and c3 are real constants.

Integrability
There are only three equations that satisfy the asymptotic
integrability condition within this family

e KdV equation (¢ = ¢ = ¢c3 = 0).
e Camassa-Holm equation (¢; = —3—5%, Q=3%)

e Degasperis-Procesi (¢ = —g—‘é}, Q=)
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Camassa-Holm (CH) equation

U — Ut + 30Ul = 22Uy Uyy + Ullyxy.

Degasperis-Procesi (DP) equation

U — Uxxt + AUty = 3Us Uy + Ul

Yan Xu

UsTC
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Energy
Camassa-Holm (CH) equation

Ha(u) = /R(u2 + u?)dx

Degasperis-Procesi (DP) equation

Ex(u) = /R(u — U )vdx, 4v—09Pv=u

Yan Xu,

UsTC
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Solution

Camassa-Holm (CH) equation
e Peaked Solution

e No shock wave solutions with initial data up € H*(R)

Degasperis-Procesi (DP) equation
e Peaked Solution

e Shock wave solutions
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© The LDG method for the Camassa-Holm equation

@ Numerical results for the CH equation
> Numerical results for Degasperis-Procesi equation
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Camassa-Holm (CH) equation

U — Uxxt + 2kUx 4 30Uy = 2UyUxy + Ullxxx,

where x is a constant.

e u representing the free surface of water over a flat bed.

A model for the propagation of the unidirectional gravitational
waves in a shallow water approximation.

It is completely integrable.

It models wave breaking for a large class of initial data.

Energy

Ha(u) = /R(u2 + u?)dx

g 1
Do
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Numerical challenge

e Such nonlinearly dispersive partial differential equations
support peakon solutions.

e The lack of smoothness at the peak of the peakon introduces
high-frequency dispersive errors into the calculation.

e It is a challenge to design stable and high-order accurate
numerical schemes for solving this equation.
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Equation

U—Ux =4,

G+ F(U)x = ~(tP)or —

(1)
2((UX)2)X

()

Yan Xu
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The LDG method

e we rewrite the equation (1) as a first order system:

u—r«=gq,
r—u,=0.
e g is assumed known and we would want to solve for u. The

LDG method is formulated as follows: find uy, r, € V4, such
that, for all test functions p, ¢ € Vp,

[ unpact [ mpec = G )y s+ Gy = [ anode
/ / -

]
[ ot [ o= @)y + ("),

i 'j

=0.

1
2

e Numerical flux: 7, =r;, -

ﬁh:uh.

&

i
i
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The LDG method (continued)
system:

e For the equation (2), we can also rewrite it into a first order
t + f(u)x

px+B(r)x—0
p—

(b(r)u)x =0

r—u,=20
where B(r) = 4r? and b(r) =

B'(r)=r.

Yan Xu
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The LDG method (continued)

e Now we can define a local discontinuous Galerkin method,
resulting in the following scheme: find gy, pp, rn € Vj such
that, for all test functions ¢, ¥, n € Vp,

/ (an) o — / (F(un) — pn + B(r))pxdx
i i

J

+((F =Bt B(m)e )jy = (F =Pt B(m))e*); = 0.

[ pwsa [ blrmyuntd (Bt ). + Blmans); g =0,

1
2
l; j

/ rpodx + / UpTxdX — (ﬁhn_)j+% + (ah77+)j_% =0.
I. .

i i

ATY

e
¥OAZLLKE

o = = = = o
Yan Xu, USTC IWIS-MASC, October 19, 2015




Numerical flux

e Alternate numerical fluxes

Ph=py, Uh=u, B(ry) = B(r; ), un=u

e Central numerical flux

b(rs)

o Fluy,uf)

e Central numerical flux:

Flup ,up) =

e Lax-Friedrichs flux

Pl o) = (P V() —a(uf —uy)), @ = max|F/(us)

Yan Xu,

UsTC

_ B(r)) — B(ry)

= Th
Lo - +
S (F(ui) + F(u}),
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Algorithm flowchart

e We obtain gy in the following matrix form

q, = AUh.

e we obtain the LDG discretization of the residual

—f(u)x + 3(U?)xx — 3((ux)?)x in the vector form

(Gn)e = res(up).
e We then combine the above two equation to obtain
A(up): = res(up).

e We use a time discretization method to solve

(up)e = A tres(up).

&

[m] = =
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L2 stability of the LDG method

The solution to the LDG schemes for the Camassa-Holm equation
satisfies the L? stability

e f(up,u): central numerical flux

d L
E/o (v + rd)dx = 0.

~

e f(uy ,ul): Lax-Friedrichs flux

d L
E/ (2 + r2)dx < 0.
0
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The main error estimate result

Let u be the exact solution of the Camassa-Holm equation, which
is sufficiently smooth with bounded derivatives, and assume

f € C3. For regular triangulations of / = (0, 1), if the finite
element space V}, is the piecewise polynomials of degree k > 2,
then for small enough h there holds the following error estimates

lu— up|? + [|r — rm]|® < Ch?K, (3)

where the constant C depends on the final time T, k, ||u||k+1,

|| 7|lx+1 and the bounds on the derivatives |f(™| m =1,2,3. Here
l|ullk+1 and ||r||k+1 are the maximum over 0 < t < T of the
standard Sobolev k 4+ 1 norm in space.

¥RAzELKG
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Remark

e Although we could not obtain the optimal error estimates
O(h*+1) for u due to some extra boundary terms arising from

high order derivatives, numerical examples verify the optimal
order O(h**1) for u.

e For the solution ry, our numerical results indicate that k-th
order accuracy is sharp.
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Main difficulty of the proof
e Nonlinear term.

e Lack of control on some of the jump terms at cell boundaries
for high order derivatives term.

e Special projection is introduce to handle troublesome jump
terms in the error equation.

e It is more challenging to perform L2 a priori error estimates for
nonlinear PDEs with high order derivatives than for first order
hyperbolic PDEs

T CHINA
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© LDG method for the Degasperis-Procesi equation

@ Numerical results for the CH equation
> Numerical results for Degasperis-Procesi equation
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Degasperis-Procesi equation

Ut — Ugxx + 4f(u)x = f(”)xxm

where f(u) = 142

e DP equation support peakon solutions and shock solutions.

e The lack of smoothness of the solution introduces more
difficulty in the numerical computation.
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Energy
Camassa-Holm (CH) equation

Ha(u) = /R(u2 + u?)dx

Degasperis-Procesi (DP) equation

Ex(u) = /R(u — U )vdx, 4v—09Pv=u

Yan Xu,

UsTC
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Numerical difficulty

e Conservation laws of the DP equation are much weaker than
those of the CH equation

e The conservation laws E;(u) can not guarantee the
boundedness of the slope of a wave in the L2-norm.

e There is no way to find conservation laws controlling the
H'-norm, which plays a very important role in studying the
CH equation.
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L? stability

e Auxiliary variable v which satisfies the following equation

dv — vy = U.

e Another form of the energy E(u)

d 2, 5 21 2 _
dt/Q(2v +2(VX) +2(VXX)>dX—0.

o [2 stability of u, i.e.

lull2(ry < 2V2| o]l 12(r)-

[m] = =
Yan Xu, USTC IWIS-MASC, October 19, 2015
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LDG scheme (I) based on dispersive form

We write the DP equation in the following form

U— Uxx = (q,

gr + 4f (u)x = f(u)

o
Yan Xu, USTC

5
IWIS-MASC, October 19, 2015
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The LDG method (1) continued
e we rewrite the equation (4) as a first order system:
q—Ix= 07
r—ux =0.
e g is assumed known and we would want to solve for u. The

LDG method is formulated as follows: find wup, ry € V} such
that, for all test functions p, ¢ € Vj,

/thdx + / rhpxdx = (Thp™ )1 + (?hPJF)J-_% =0,

I I

[ modet [ unndx — @07y + (@07,

1 =0.
2
I lj
. ~ . + .
e Numerical flux: 1, =r,", Up=u,. mNA
£x3
=} = = = DA

Yan Xu, USTC IWIS-MASC, October 19, 2015



The LDG method (I) continued

For the equation (5), we can also rewrite it into a first order
system:

g: +4s — px =0,
P_5X:Oa
s —f(u)x =0.
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The LDG method (1) continued

Find gn, pp, sp € V), such that, Y, ¥, n € Vp,

/(qh)tsodX+/4shsodx+/phsoxdx— (P )j41 + (Phe™);1 5 0,
U U U

[ it [ s = (&) 1y + )y

i I

0,

/shndx-l-/f(uh)nxdx— (fn_)j+% —|—(fn+)j_ =0.

I I

NI

The numerical fluxes are chosen as

ﬁh:p;a gh:s}—,i—a

and f(u, ,u;}) is a central flux or Lax-Friedrichs flux. o
INA
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Algorithm flowchart (1)
e We obtain gy in the following matrix form
q, = Aup,.

e we obtain the LDG discretization of the residual
4f(u)x — f(u)xxx in the vector form

(qn)e = res(up).

e We then combine the above two equation to obtain

A(up): = res(up).

e We use a time discretization method to solve

(up)e = A tres(up).
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LDG scheme (Il) based on hyperbolic-elliptic form

We write the DP equation in the following form

ur + f(u)x + p =0,
P — Pxoc = 3f(u)x-

We rewrite the equation as a first order system:

ur+q+p=0,
p — sx = 3q,
s—px =0,
q-— f(u)x =0.
¢S#é-ﬁ.¢*é
o = - = = DA
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LDG scheme (II) continued
Find up, sp, pn, gn € V} such that, Vo, ¥, n € Vj,
/(uh)gpdx + /I(qh + pn)edx =0,
Ij i

prvdx + [ spihxdx — Sy )1 + (Sptp™);_1 =3 [ quipdx,
. . T3 J72 /.

li li i

/shndX+/phnxdx— (B )js1 + (o );_1 =0,
I lj
/ gnpdx + / f(up)pxdx — (?p‘)ﬂ_% + (fp+)j_% =0.
I Iy
Numerical fluxes are chosen as
ﬁh:p;a§h25+- Bt
Here 7(u; , u;) is a central flux or Lax-Friedrichs flux. ke

Yan Xu, USTC IWIS-MASC, October 19, 2015



Algorithm flowchart (1)

e Given the solution uy at time level n, we first get q,,.
q, = res(up).
e We obtain pp, in the following matrix form
— 3A—1
P = qp-

e Using the solution q,, p, to computing discretization of the
residual p + g, then we obtain

(un)e = qp + Py

Any standard ODE solvers can be used here, for example the
Runge-Kutta methods.
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Stability of the LDG method (1) and (I1)
e Energy stability of the solution vy,

e f(uy ,u;): central numerical flux

d 5 1
E/Q <2v,3 + Ewﬁ + 52,%) dx = 0.

(up, , uj): Lax-Friedrichs flux

d 5 1
E/Q <2vﬁ + Ewﬁ + 52,%) dx <0.

where wj, and zp, are approximation of v, and viy.
e 12 stability of solution up,

lunlli20) < 2V2|uolli2(q)-

&

[m] = =
IWIS-MASC, October 19, 2015
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Total variation bounded property for the P® case
TVM(uf) < exp(CT)TVM(u?),

J
where TVM(up) = > |Atyjl.
=1

J

ammmnwxm
F CHINA
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Outline

@ Numerical results

@ Numerical results for the CH equation

o
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Smooth solution
Smooth traveling waves are solution of the form

u(x,t) = ¢(x — ct)

where ¢ is solution of second-order ordinary differential equation

o}
¢XX - ¢ (d) _ C)2 .
«a = ¢ = 3. The initial conditions for ¢ is
ki

90 =1, =0

It gives rise to a smooth traveling wave with period
a ~ 6.46954603635.
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Table: Accuracy test for the CH equation. Periodic boundary condition.
Uniform meshes with N cells at time ¢t = 0.5.

U — up r—rp
N L2 error order L error order L? error order L error order
10 1.42E-01 - 3.08E-01 - 1.42E-01 - 3.08E-01 -
PO 20 7.95E-02 0.84 1.77E-01 0.80 7.95E-02 0.83 1.77E-01 0.57
40 4.23E-02 0.91 9.41E-01 0.91 4.23E-02 0.94 9.41E-02 0.87
80 2.18E-02 0.95 4.83E-02 0.96 2.18E-02 0.98 4.83E-02 0.97
10 1.16E-02 - 6.63E-02 - 1.16E-02 - 6.63E-02 -
p! 20 3.12E-03 1.90 1.86E-02 1.84 3.12E-03 0.68 1.86E-02 0.24
40 8.05E-04 1.95 4.76E-03 1.96 8.05E-04 0.85 4.76E-03 0.63
80 2.04E-04 1.98 1.19E-02 2.00 2.04E-04 0.93 1.19E-03 0.87
10 1.41E-03 - 6.75E-03 - 1.41E-03 - 6.75E-03 -
p? 20 1.49E-04 3.24 9.06E-04 2.90 1.49E-04 2.64 9.06E-04 2.64
40 1.70E-05 313 9.85E-05 3.20 1.70E-05 2.06 9.85E-05 1.45
50 8.95E-06 2.88 4.96E-05 3.07 8.95E-06 1.95 4.96E-05 1.77
*  CHINA
LECE L X T L3S
o = = E E 9Oace
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Peakon solution
In the single peak case, the initial condition is

c

cosh(a/2) OShx —>0); Ix — x| < a/2,
UO(X) = .

cosh(a/2) cosh(a — (x —x)), |x—xo| > a/2,

where xp is the position of the trough and a is the period. We
present the wave propagation for the CH equation with parameters
¢ =1, a=230and xg = —5. The computational domain is [0, a.
PS5 element with N = 320 cells.

T CHINA
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Two-peakon interaction

In this example we consider the two-Peakon interaction of the CH
equation with the initial condition

uo(x) = ¢1(x) + P2(x),

where
Ci
————~ cosh(x — x;), - x| <a/2,
cosh(a/2) cosh(x — x;) Ix — x| < a/
di(x) = i=1,2.
W’a/z)COSh(a—(X—Xi)), |X—X,'| > 3/2,
The parametersare c; =2, ¢ =1, x1 = =5, xo0 =5, a=30. The
computational domain is [0, a]. P° element with N = 320 cells.
yomwsEK%E
o = = E = DA
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Three-peakon interaction

In this example we consider the three-Peakon interaction of the CH
equation with the initial condition

uo(x) = ¢1(x) + d2(x) + ¢3(x),

where ¢;, i = 1,2,3 are defined as before. The parameters are
C1=2, C2=1, C3=0.8, X1=—5, X2=—3, X3=—1, a=30.
The computational domain is [0,a]. P° element with N = 320
cells.
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Solution with a discontinuous derivative
In this example we consider a initial data function ug which has a
discontinuous derivative. The initial condition is

10

©0)= G

The computational domain is [~30,30]. P? element with
N = 640.
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Break up of the plateau traveling wave

A cut-off peakon, i.e. a plateau function u(x,t) = ¢(x — ct) with

ceXtk, x < —k,
p(x) =4 ¢ x| < k,
ce *Tk, x > k.

We put ¢ = 0.6 and kK = 5. The computational domain is
[—40,40]. P? element with N = 800 cells.
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@ Numerical results for Degasperis-Procesi equation
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Accuracy test
Table: Accuracy test for the DP equation with the exact solution
u(x, t) = ce*=<tl Periodic boundary condition. ¢ = 0.25. Uniform
meshes with N cells at time t = 1.
Scheme (1) Scheme (1)
N L? error order L®° error order L2 error order L= error order
20 6.62E-03 - 6.84E-02 - 6.62E-03 - 6.84E-02 -
pO 40 1.98E-03 1.74 2.18E-02 1.65 1.98E-03 1.74 2.18E-02 1.65
80 8.56E-04 1.21 1.02E-02 1.09 8.56E-04 1.21 1.02E-02 1.09
160 4.76E-04 0.85 6.39E-03 0.68 4.76E-04 0.85 6.39E-03 0.68
20 2.31E-03 - 3.19E-02 - 2.31E-03 - 3.19E-02 -
p1 40 1.73E-04 3.74 2.42E-03 3.71 1.73E-04 3.74 2.43E-03 371
80 3.92E-05 2.14 5.31E-04 2.19 3.92E-05 2.14 5.31E-04 2.19
160 1.08E-05 1.86 1.88E-04 1.50 1.08E-05 1.86 1.88E-04 1.50
20 | 390E04 - 66103 - 390E-04 -  661E03 -
p2 40 3.35E-05 3.54 5.25E-04 3.93 3.35E-05 3.54 4.33E-04 3.93
80 | 407E-06 304  525E-05  3.04 407E-06 304  5.25E-05  3.04
160 5.77E-07 2.82 7.13E-06 2.88 5.77E-07 2.82 7.13E-06 2.88
10 1.49E-03 - 1.77E-02 - 1.49E-03 - 1.77E-02 -
p3 20 1.51E-04 3.30 2.69E-03 2.72 1.51E-04 3.30 2.69E-03 2.72
40 7.64E-06 4.30 1.32E-04 4.35 7.64E-06 4.31 1.32E-04 4.36
80 1.60E-07 5.58 2.13E-06 5.95 1.60E-07 5.58 2.13E-06 5.95
10 7.07E-03 - 7.09E-02 - 7.07E-03 - 7.09E-02 -
p* | 20 | 172E04 536  275E-03  4.60 172E04 536  276E-03  4.68
40 | 468E-06 520  845E05 502 468E-06 520  845E-05  5.03
80 | 830E08 58  131E06 601 8.30E-08 582  131E06 601
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Peakon solution
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Figure: The peakon profile of the DP equation with
u(x,t) = e"*=tl. Periodic boundary condition in [—40,40]. P* elements

and a uniform mesh with N = 228 cells.
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Two-peakon interaction
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Figure: The two-anti-peakon interaction of the DP equation. Periodic =
boundary condition in [—40,40]. P? elements and a uniform mesh with | ™
— K*xg
N = 512 cells. oo
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Shock peakon solution
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Figure: Shock peakon solution of the DP equation with the exact
solution u(x, t) = —sign(x)e~*| /(1 4 t). Periodic boundary condition in
[—30,30]. P* elements and a uniform mesh with N = 228 cells.
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Shock formation
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Figure: Shoczk formation of the DP equation with the initial condition
up(x) = €% sin(rx). Periodic boundary condition in [-2,2]. P3
elements and a uniform mesh with N = 100 cells.
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Peakon and anti-Peakon interaction (Symmetric)

t=0

Scheme (1)
Scheme (i)

o5

Scheme (1)
Scheme (Il)

———— Sscheme ()
..... Scheme (1)

05

Figure: Symmetric peak and antipeak interaction of the DP equation.
Periodic boundary condition in [-25,25]. P® elements and a uniform

mesh with N = 256 cells.
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Peakon and anti-Peakon interaction (Nonsymmetric)
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Figure: Nonsymmetric peak and antipeak interaction of the DP
equation. Periodic boundary condition in [-25,25]. P3 elements and a
uniform mesh with N = 256 cells.
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Triple interaction
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Figure: Peakon, shock peakon and anti-peakon of the DP equation.
Periodic boundary condition in [-25,25]. P® elements and a uniform

mesh with N = 256 cells.
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@ Numerical results for the CH equation
@ Numerical results for Degasperis-Procesi equation
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Conclusion
e LDG methods to solve the nonlinear equation.

e Stability is proven for the schemes for general solutions .

e Numerical examples are given to illustrate the accuracy and
capability of the methods.

Future work
e Total variation bounded property for the high order case.

e a priori error estimates of numerical solutions.
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