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Discontinuous Galerkin Methods
e Finite element method for approximating PDE.
e Piecewise polynomial completely discontinuous.

Continuous Galerkin FEM Discontinuous Galerkin FEM

N

Local variational formulation (element-by-element).
First introduced in 1973 by Reed and Hill.

Hyperbolic conservation law by Cockburn and Shu.
According the search in Mathscinet, papers with key
words “Discontinuous Galerkin”

o Before 2000, 203 papers;

e 2001-2014, 2357 papers. A
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Introduction to DG method for hyperbolic conservation laws

To solve a conservation law:
ur + f(u)x =

Assume the solution u come from a finite dimensional
approximation space V), which is usually taken as the space of
piecewise polynomials of the degree up to k:

Vi ={v:v|, € PX(l),j=1,--- N},

where I; = [xj_1/2, Xj11/2]- Notice that u € V}, is discontinuous
(double-valued) at the cell interfaces.
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Multiplying with a test function v € V), and integrating by parts
over a cell [; = [xj_1/2, Xj41/2], we have

Wiry — Flui1)y1 =0

Nl
NI
N|=
Nl

/ufvdx—/f(u)vxdx—i-f(ujJr
U U

However, the boundary terms f(uj+%) and Vi1 etc. are not

well-defined when u, v € V), as they are discontinuous
(double-valued) at the cell interfaces.
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Double—valued need to pick/define one
u h — (u hoU )
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Uy,
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From the conservation and stability (upwind) considerations, we
take

* A single value monotone numerical flux to replace f(u; 1):
2

Thy

Fu= . ut
ey =)

N|=
Nl
Nl=

where f(u, u) = f(u)(consistency); f(1,]) (monotonicity) and
f is Lipschitz continuous with respect to both arguments.

e Values from inside /; for the test function v:

J’_ —
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DG scheme
Hence the DG scheme is: Find u € V}, such that

/utvdx—/ljf(u)vxdx fiy v —G_%Vj_% =0.

1
I; 2

for all v € V.
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Time discretization: TVD Runge-Kutta method(Shu and Osher,

JCP 88)

For the semi-discrete scheme:
du
=
g = L)

where L(u) is a spatial discretization operator, the third order TVD
Runge-Kutta method is simply:

u® = u" + AtL(u")
u® = ?_lu" + %(u(l) + L(u™M))

un+1 — %un + %(U(Z) + L(u(2)))
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Numerical fluxes
Advantages of DG methods:
Double-valued, need to pick/define one

v" Wide Range of PDE's f(/u-;) _ f(“ﬁ»“:)

v Easy handling complicated geometry Up =1 (up,u))

h
and boundary conditions ut
Allowing the hanging nodes "

Compact and then parallel efficiency. “h

Easy h — p adaptivity; : " ) )

NENENE

Flexible choice of approximation spaces Hanging node

Nonconforming Mesh and Variable Degree

Disadvantages of DG methods:

x more of degrees of freedom

Hanging!Node

% Systems of equations difficult to solve

x Techniques under development
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Example: linear convection equation in 1D
ur +ux =20
on the domain (0;27) x (0; T)with the characteristic function of

the interval (7; 37”) as initial condition and periodic boundary

conditions with 40 cells (Cockburn-Shu, JSC, 2001).

k=1, t=100mm, solid line: exact solution; k=6, t=100T, solid line: exact solution;
dashed line / squares: numerical solution dashed line / squares: numerical solution
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Example: linear convection equation in 2D

ug+ ux +u, =0

on the domain (0; 27)? x (0; T)with the characteristic function of
the interval (7; 37”)2 as initial condition and periodic boundary

conditions with 40 x 40 cells (Cockburn-Shu, JSC, 2001).

Yan Xu, USTC IWIS-MASC, October 18, 2015
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Two dimensional compressible Euler equations
Double Mach reflection problem (Cockburn-Shu, JSC, 2001)

Rectangles P1, Ax =Ay = 1/240
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Two dimensional compressible Euler equations

The flow past a forward-facing step problem. No special treatment

is performed near the corner singularity. (Cockburn-Shu, JSC,
2001)

Rectangles P1, Ax=Ay =1/320
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@ Introduction to discontinuous Galerkin (DG) methods

@ LDG method for heat equation
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Difficulty in generalizing DG to PDEs containing higher spatial
derivatives

Generalization the DG method to PDEs containing higher spatial
derivatives. For example, the heat equation

U — Uy =0

with proper boundary and initial conditions.
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A straightforward generalization is replacing f(u) = —uy in the DG
scheme for the conservation law (u; + f(u)x = 0): find v € V,
such that, for all test functions v € V4,

/I_”tVdX+/I_”XVXdX_“Xj+§‘/J'+§+”Xj_§vj_; =0.
J J

Considering that diffusion is isotropic, a nature choice of the flux
could be the central flux

N 1 _
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However, it has been proven in Zhang and Shu, M3AS 03 that the
scheme is

e Consistent with the heat equation

e (very weakly) unstable

osk P* elements ook P? elements
F o Exact Exact
L = = = = 320cells = = = = 320cells

o 40 cells O 40 cells

L
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The LDG method for the heat equation (Bassi and Rebay, JCP 97;
Cockburn and Shu, SINUM 98):

e Rewrite the heat equation as
—4x=0, g—u=0.

e Find u, g € V), such that, for all v,w € V,

uevax + [ que— vy + 4 avy =0,
J J
dx + | upx — T4 d0_ipt,=0.
/Ijqp ] Px J+2pj+% J_EPJ—%
g can be locally solved and eliminated, hence local DG.
Y
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The choice for the numerical flux is the following alternated flux

A~ —_ S J’-

u., 1 =u. 1 =4d.

Jt3 i3’ 9+3 qJ+§’
or

A _ + A~ _ —

u., 1 =u4. 1 =

J+5 J{-%’ J+3 qJ %

Then we have

e 12 stability
e optimal convergence of O(h**1) in L2 for P* elements for u
and q.
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Table: L2 and L™ errors and orders of accuracy for the LDG method with
alternated fluxes applied to the heat equation with an initial condition
u(x,0) = sin(x), t = 1. Third order Runge-Kutta in time with a small
At so that time error can be ignored.

k=1 k=2
Ax 12 error order L°° error order 12 error order L°° error order
27 /20, u 1.58E-03 — 6.01E-03 — 3.98E-05 — 1.89E-04 —
27 /20, q 1.58E-03 — 6.01E-03 — 3.98E-05 — 1.88E-04

[ 2m/40,u [ 3.93E-04 [ 2.00 | 151E-03 | 1.99 [ 498E-06 | 3.00 | 237E-05 | 299 |
[ 27/40,q | 3.04E-04 | 2.00 | 15IE-03 | 1.00 | 4.98E-06 | 3.00 | 2.37E-05 | 2.99 |
[ 27/80, u | 9.83E-05 | 2.00 | 3.78E-04 | 2.00 | 6.22E-07 | 3.00 | 2.07E-06 | 3.00 ]
[ 27/80,q | 983E05 | 2.00 | 3.78E-04 | 2.00 | 6.22E:07 | 3.0 | 2.07E-06 | 3.00 |
[ 27/160, u | 2.46E-05 | 2.00 | O.45E-05 | 2.00 | 7.78E-08 | 3.00 | 3.71E-07 | 3.00 ]
[ 27/160, g | 2.46E-05 | 2.00 | O.45E-05 | 2.00 | 7.78E-08 | 3.00 | 3.71E-07 | 3.00 |
***.‘h‘; A7)
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@ DG method for hyperbolic conservation laws
) LDG method for heat equation

© LDG method for high order derivative equations

» Cahn-Hilliard equation
o KdV type equations
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Main idea of LDG method for high order derivative equations
o Rewrite the high order derivative term into the proper first
order equations.
e Use the DG method for the first order equations.
e The key point of the method is to design the numerical
fluxes to ensure the stability.

e Odd derivatives equation: upwinding principle.
o Even derivatives equation: alternating fluxes.

Review paper
e Y. Xu and C.-W. Shu, Local discontinuous Galerkin
methods for high-order time-dependent partial differential
equations, Communications in Computational Physics, 7
(2010), pp. 1-46. R
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LDG methods for nonlinear dispersive equations

e KdV equation (Yan and Shu SINUM 2002, Xu-Shu CMAME
2007).

e KdV-Burgers equation, Kawahara equation (Xu-Shu, JCM
2004 ).

e Fully nonlinear K(m, n) and K(n, n, n)
equations(Levy-Shu-Yan JCP 2004, Xu-Shu JCM 2004).

o Kadomtsev-Petviashvili equation (Xu-Shu, Physica D 2005).

e Zakharov-Kuznetsov equation (Xu-Shu Physica D 2005,
Xu-Shu CMAME 2007).

e lto-type coupled KdV equations (Xu-Shu CMAME 2006).
vu-~
¥OAELXKY
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LDG method for high order derivative equations | heoretical analysis Time discretization

Kadomtsev-Petviashvili equation

Zakharov-Kuznetsov equation (Physica
(Physica D, 2005)

D, 2005)
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LDG methods for phase field models

e Cahn-Hilliard equation (Xia-Xu-Shu JCP 2007, Guo-Xu JSC
2014)

e Allen-Cahn/Cahn-Hilliard system (Xia-Xu-Shu, CICP 2009)

e Functionalized Cahn-Hilliard equation (Guo-Xu-Xu, JSC 2015)
¢ No-slop-selection thin film model (Xia, JCP 2015)

e Cahn-Hilliard-Hele-Shaw system (Guo-Xia-Xu, JCP 2014)

e Cahn-Hilliard-Brinkman system (Guo-Xu, JCP 2015)

e Phase field crystal equation (Guo-Xu, submitted)
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2D Cahn-Hilliard equation (JSC, 2014) 3D Functionalized Cahn-Hilliard (JSC,
2015)
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LDG methods for nonlinear diffusion Kuramoto—Sivashinsky (CMAME 2006)

equations

n=300

e Bi-harmonic equations (Yan-Shu - i\

JSC 2002, Dong-Shu SINUM
2009). -

e Kuramoto-Sivashinsky equation

(Xu-Shu, CMAME 2006). i

e Surface diffusion of graphs and
Willmore flow of graphs

(Xu-Shu JSC 2009, Ji-Xu

submitted 2009). -

e Porous medium equation
(Zhang-Wu JSC 2009).

75 700

x 8|
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LDG methods for Schroédinger equation

¢ Nonlinear Schrodinger equations (Xu-Shu JCP 2005,
Lu-Cai-Zhang [JAM 2005 )

e Zakharov system (Xia-Xu-Shu JCP 2010)

e Stationary Schrodinger equations (Wang-Shu JSC 2009,
Guo-Xu CICP 2014 )

¢ Nonlinear Schrédinger-KdV System (Xia-Xu-Shu CICP 2014)

e Nonlinear Schrodinger equation with wave operator (Guo-Xu
JSC 2015)
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2D Schrédinger equation (JCP, 2005) 2D Zakharov system (JCP, 2010)
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Time discretization

LDG methods for phase transition problems

1D phase transition in solid (JSC 2014)
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Navier-Stokes-Korteweg (JCP, 2015)

() t=0

(c) t=2
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LDG methods for other equations Degasperis-Procesi (CICP)

¢ Degasperis-Procesi (DP) equation N

(Xu-Shu, CICP 2011). ’j'm”j\r

U — Uxxt + AUty = Uy Uy + Ulixxx

Camassa-Holm (SINUM)
e Camassa-Holm (CH) equation

(Xu-Shu, SINUM 2008). JM
Ur — Uxxt + 3UUx = 2Uy Uy + Ullyxx. ; e

¢ Hunter-Saxton (HS) equation Hunter-Saxton (SIJSC)
(Xu-Shu, SIJSC 2008 and JCM 2010).

Usxt + 2Ux Uy + Ullyyxe = 0 W

Yan Xu, USTC IWIS-MASC, October 18, 2015




@ DG method for hyperbolic conservation laws
@ LDG method for heat equation

© Theoretical analysis of LDG methods

@ Cahn-Hilliard equation
o KdV type equations
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Theoretical analysis of LDG methods
e Energy stability

e 2 3 priori error estimates

o Negative order norm estimates.
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Semi-discrete energy stability
e General nonlinear case v/

e Exception: Navier-Stokes-Korteweg equation 7

Fully-discrete energy stability

e Crank-Nicholson scheme on time

o Nonlinear Schrodinger dinger equation with wave operator
(Guo-Xu JSC 2015)

e Implicit backward Euler scheme on time with convex splitting

Cahn-Hilliard equations (Guo-Xu JSC 2014)
Cahn-Hilliard-Hele-Shaw system (Guo-Xia-Xu JCP 2014)
Cahn-Hilliard-Brinkman (Guo-Xu JCP 2015)

Phase field crystal equation (Guo-Xu submitted 2015)

e IMEX scheme on time

o Advection-diffusion problem (Wang-Shu-Zhang SINUM 2015) R
AXE
=} = = E = DA
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Semi-discrete error estimates

Assume u is the exact smooth solution, u, € V} is the solution
computed by LDG methods.

e 2 a priori error estimates
|u— upl2 < ChFF12
e Negative order norm estimates.
o~ unl e < C 217

where the negative order norm is defined as
— !u7¢}ﬂ
lull—e.0 = suPoccs () foT,o-
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Main difficulty of L? a priori error estimates
e Nonlinear term.

e Lack of control on some of the jump terms at cell boundaries
for high order derivatives term.

e Special projection is introduced to handle troublesome jump
terms in the error equation.

e It is more challenging to perform L2 a priori error estimates for
PDEs with high order derivatives than for first order
hyperbolic PDEs.
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Sub-optimal L2 a priori error estimates O(hk+%)
e Nonlinear KdV equations (1D): (Xu-Shu CMAME 2007).

e Nonlinear Zakharov-Kuznetsov equation (2D): (Xu-Shu
CMAME 2007).

o Camassa-Holm equations (1D): (Xu-Shu SINUM 2008).
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Optimal L2 a priori error estimates O(hk+1)
e Bi-harmonic equations (Multi-D): (Dong-Shu SINUM 2009)

e Nonlinear Willmore flow equations (Multi-D): (Ji-Xu [JNAM
2011)

e Linear odd order equations (1D): (Xu-Shu SINUM 2012)

e Linear Schrédinger equations (Multi-D): (Xu-Shu SINUM
2012)

¢ Nonlinear surface diffusion equations (Multi-D): (Ji-Xu JSC
2012)

¢ Nonlinear Schrodinger equation with wave operator (Multi-D):
(Guo-Xu JSC 2015)
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Negative order norm estimates
2k+1
lu = upl—e0p < CHF

&
where [[u]|—¢.0 = SuPeeco(q) W.
e Linear convection diffusion equation: (Ji-Xu-Ryan MC 2012)

¢ Nonlinear hyperbolic conservation laws: (Ji-Xu-Ryan JSC
2013)

e Linear odd order equations ?

LECE L X T L3S
= & - = = 9ae
Yan Xu, USTC IWIS-MASC, October 18, 2015



@ DG method for hyperbolic conservation laws
@ LDG method for heat equation

@ Time discretization

@ Cahn-Hilliard equation
o KdV type equations
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Explicit time discretization
e Easy implementation

e The time step At = cAxk, k is the order of derivatives.

TVD Runge-Kutta method(Shu and Osher, JCP 88)

For the semi-discrete scheme:
du
=1L
5 = L)

where L(u) is a spatial discretization operator, the third order TVD
Runge-Kutta method is simply:

u® =y 4 AtL(u")
u@ = iu T (u<1>+L(u<1 )

= Lur £ 200 1 (@) ot
34 T3 e
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Implicit time dsicreization

e Additive Runge-Kutta (ARK) method

e Spectral Deferred Correction (SDC) method
Diagonally Implicit Runge-Kutta (DIRK) method
Implicit-explicit (IMEX) method
Exponential Time Differencing (ETD) methods

Solve linear/nonlinear system A(u) = f.

Large time step: At = cAx.

A
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@ Fast solver for implicit system
@ Cahn-Hilliard equation
o KdV type equations
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Motivation

e Higher order discontinuous Galerkin methods provide accurate
discretizations of time-dependent partial differential equations
with higher order spatial derivatives.

e Explicit stability constraint of the DG method applied to the
higher order spatial derivatives decreases dramatically.

e The time step At = cAx¥, k is the order of derivatives.

Objectives
e Higher order DG space discretization
e High order implicit time discretization

e Fast solver to solve the discretization system Au = f

u%ﬁ!%'é.,‘!%.‘(!m
S CHINA
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Linear Matrix A
e large
e sparse

e ill-conditioned

Solver

e Direct Methods (LAPACK): Cost=0O(N3), N — oo
e lterative Methods

e Multigrid (MG) method
o Nonlinear Full Approximation Scheme (FAS) multigrid methods
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The Multigrid algorithm

Two-Grid Correction Scheme
e An initial function ug = ug pre on the finer grid
e Apply 11 pre-relaxation sweeps:
T .
up'pre = Uh pre + Bn(fh — Anup pre)
e Update the solution by a coarse-grid correction step
0 -1
Up,posT = Up'pre t+ PaAy Run(fa — Anuy'pre)

e Apply v, post-relaxation sweeps

i1 i
uy'post = Uh.post + Bn(fa — Anup post)

where By, is an approximate inverse of Ap. Ppy and Ry, are
prolongation and restriction operator respectively.

&

Yan Xu, USTC IWIS-MASC, October 18, 2015
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Possible choice of smoother operator

We decompose Ay into a strict block-lower, block-diagonal, and
strict block-upper matrix, i.e.

Ap = Lp+ Dy + Up.

Block-Jacobi smoother: B, = Dh_l.

Block Gauss-Seidel smoother: By, = (Dj, + L)~

Damped block-Jacobi smoother: B = ozDh_l.

Damped block Gauss-Seidel smoother: By, = a(Dp + Lp) ™.

A
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Local model analysis

e The convergence factor of the two-grid method (A. Brandt,
SINUM, 1994).

| U;;zosr |

A =sup
HugREH

The convergence factor might be computed in terms of the
symbol of the error propagation operator.

For the linear iteration, the error propagation operator is
defined as:
En, =1 — BhAp.

When A < 1, we will ge a convergent iteration.

The smaller X is, the faster is the iteration.

RNy
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Algorithm 1

e The error propagation reads:
2grld . 1%} 71 %%
E; ™ = E;?[l — PhyAy RunAp)E; .

* X\ =supyg IEx(6)]], where E,,(e) denote the error
propagation operator in the frequency space.

e For symmetric problems, the estimation of the spectral radius
of Ep could be reduced to the computation of its largest
eigenvalue.

e For non-symmetric case, one can define the asymptotic
convergence factor as:

~

)\asymp = sup O‘1(Eh(0)).
0+#0

where o7 is the spectral radius of E, (i.e. largest absolute
eigenvalue).
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Outline

© Fast solver for implicit system
o Cahn-Hilliard equation

o
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Asymptotic

convergence factor changes with damping parameter « in 1D
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(a) N=64, Jacobi, P (b) N=64, Gauss-Seidel, P*
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(c) N=64, Jacobi, P> (d) N=64, Gauss-Seidel, P?
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Asymptotic

convergence factor changes with damping parameter « in 2D

L
b2 63 64 05 68 07 08 09 1 11
a
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o

(a) N=64, Jacobi, P*

(b) N=64, Gauss-Seidel, P*
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(c) N=64, Jacobi, P?
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Eigenvalue spectral of E-¢™ with damped Jacobi smoother

E of E of
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Eigenvalue spectral of E-¢™ with damped Gauss-Seidel
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Convergence rate of FAS Multigrid solver
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Outline

© Fast solver for implicit system

o KdV type equations
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Motivation

e The MG method is mainly used to solve PDEs with even-order
spatial derivatives.

e There is little work for PDEs with odd-order spatial
derivatives.

e Does the MG method work for this type of equations?
e Consider the one-dimensional linear KdV equation

U + Uy = 0.
e We use an initial guess

16j7T 40]7r

-=—[m( )+

consisting of the k = 16 and k = 40 modes.
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Coarse-grid correction on a grid with n = 64

(a) The error after one sweep of (b) The error after three sweeps of

weighted Jacobi. weighted Jacobi.
P
¥RAzELKG
o P = = = 9ac
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(c) The error after four sweeps of (d) The error after five sweeps of

weighted Jacobi. weighted Jacobi.
# oA
¥RAzELKG
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(e) The fine-grid error after three (f) The fine-grid error after the coarse-
sweeps of weighted Jacobi on the grid correction is followed by three

coarse-grid problems.

weighted Jacobi sweeps on the fine grid.

Yan Xu, USTC
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The LDG scheme for the KdV type equations
Rewrite equation as a first order system:

u+px=0, p—gx=0, g—ux=0.

Applying the LDG method to the system, we obtain an ODE
system and apply the time marching method.

u;+ Mgp=0, p—Mrq=0, gq— Mu=0. (1)

Time discretization and solver
e High order implicit ARK time discretization method.
e Multigrid method to solve linear system.
e Time step At = O(Ax).

Aotoey
=TT HINA
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Two methods to eliminate the auxiliary variables (1)

e Method 3X
Eliminate g and p and get an ODE

u; = L(u).

The backward Euler time marching method is applied and we
obtain a linear system

Au™tl =,

where A= 1+ AtM,%ML, f is the corresponding right hand
side vector consisting of ¢ and / is the identical matrix.

A
LECE L X T L3S
=} = = E = DA
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Two methods to eliminate the auxiliary variables (II)

e Method X-2X
Only eliminate g, then we get

us = Ll(p)7
{ p = Lo(u). )

We apply the backward Euler time marching method and
obtain a system of two coupled equations for [u™*?!, p"*1]

GU =F,
where

utl / AtMg
U_|:pn+1:|7 G_|:_MRML /

&

and F is the corresponding right hand side vector consisting of | %2

n n
n .
u-a d p Yan Xu USTC IWIS-MASC, October 18, 2015




Convergence behavior for the multigrid method

2 p2grid — (AN Y oY D2 [2grid _
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Accuracy test for the equation vy + U = 0, At = 0.1Ax.

Method 3X Method X-2X
N L2 error order L®° error order L? error order L error order
16 8.54E-02 - 6.59E-02 - 8.54E-02 - 6.60E-02 -

Pl 32 1.83E-02 222 2.08E-02 1.66 1.83E-02 222 2.08E-02 1.66
64 4.36E-03 2.07 5.77E-03 1.85 4.36E-03 2.07 5.77E-03 1.85
128 1.07E-03 2.01 1.50E-03 1.94 1.07E-03 2.01 1.50E-03 1.94
16 6.99E-03 - 5.94E-03 - 6.99E-03 - 5.94E-03 -

P? 32 8.78E-04 2.99 7.90E-04 291 8.78E-04 2.99 7.90E-04 291
64 1.10E-04 2.99 1.00E-04 2.98 1.10E-04 2.99 1.00E-04 2.98
128 1.38E-05 3.00 1.26E-05 2.99 1.38E-05 3.00 1.26E-05 2.99
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Convergence rates for the MG solver for P! and P?

log(residual)

(a) Method 3X, P! (b) Method X-2X, P!

log(residual)

L L .
B * MG lierations ? * MG iterations INA
P

(c) Method 3X, P? (d) Method X-2X, P? nao

Yan Xu,  USTC IWIS-MASC, October 18, 2015




Introduction of DG methods LDG method for high order derivative equations Theoretical analysis Time discretization Fas
0000000000000000000 0o

Observation

e High order time discretization methods can be coupled with
the LDG space discretization.

e The eigenvalue spectra of Eﬁgr'd is strictly less than 1, i. e.

the two-grid algorithm is convergent.

e Method X-2X shows better convergence behavior than
Method 3X.

e Method X-2X require more memory, especially for high
dimensional case.

e Each iteration of the MG solver is an O(N) operation.

e The technique can also be used for the nonlinear and high
dimensional equations.

¥RAzELKG
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Fifth-order KdV

Up + Uk = 0.
We rewrite it as a first order system:
u+px=0, p—qgx=0, g—5=0, s—n=0, r—u=0

Applying the LDG method to the system, we obtain an ODE
system and apply the time marching method.

Methods to eliminate the auxiliary variables

e Method 5X
e Method 3X-2X
e Method X-2X-2X B
L E X T ES
=] = - = = QA
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Method 5X: NOT convergent
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Convergence behavior for the multigrid method

B Y ) 3 T s
Re

(a) 3X-2X, p*, EZ&™
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(c) 3X-2X, P?, E*€™
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Accuracy test for the equation vy + Uxx = 0, At = 0.1Ax.

Method 3X-2X Method X-2X-2X
N L2 error order L®° error order L? error order L error order
16 8.85E-01 - 4.99E-01 - 8.86E-01 - 4.99E-01 -

Pl 32 1.76E-01 2.32 1.07E-01 221 1.76E-01 2.32 1.07E-01 221
64 2.52E-02 2.80 1.63E-02 271 2.52E-02 2.80 1.63E-02 271
128 3.36E-03 2.90 2.38E-03 2.77 3.36E-03 2.90 2.38E-03 2.77
16 8.02E-01 - 4.54E-01 - 8.02E-01 - 4.54E-01 -

P? 32 1.55E-01 2.36 8.77E-02 2.37 1.55E-01 2.36 8.77E-02 2.37
64 2.19E-02 2.82 1.24E-02 2.82 2.19E-02 2.82 1.24E-02 2.82
128 2.81E-03 2.96 1.59E-03 2.96 2.81E-03 2.96 1.59E-03 2.96
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Convergence rates for the MG solver for P! and P?

z T O g 0 2 T 0 g
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(a) Method 3X-2X, P (b) Method X-2X-2X, P*

* ; N MG %lerauuns‘s ;u N ; * MG :I;lerunonsé 1‘u m
P
(c) Method 3X-2X, P> (d) Method X-2X-2X, P> hac

Yan Xu,  USTC IWIS-MASC, October 18, 2015




Introduction of DG methods LDG method for high order derivative equations Theoretical analysis Time discretization Fas
0000000000000000000 0o

Observation

e High order time discretization methods can be coupled with
the LDG space discretization.

e Time step At = O(Ax).

e The eigenvalue spectra of Eﬁgrid for Method 5X is larger than
1 and the two-grid algorithm is not convergent.

e The eigenvalue spectra of Eﬁgﬁd is strictly less than 1, i. e.

the two-grid algorithm is convergent for Method 3X-2X and

Method X-2X-2X.

e Method X-2X-2X shows better convergence behavior than
Method 3X.

e Method X-2X-2X require more memory, especially for high
dimensional case.

e Each iteration of the MG solver is an O(N) operation. o
e The technique can also be used for the nonlinear and high '::é
dimensional equations.
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The general odd-order linear PDEs

us + U)(<2m+1) =0.

We first rewrite it as a first order system:
u + (p2m)x =0, pom= (P2m—1)x: P2 = (pl)x> pP1 = Ux.

Applying the LDG method to the system, we obtain an ODE
system and apply the time marching method.

Three methods to eliminate the auxiliary variables
e Method 3X-2X-2X...-2X
¢ Method X-2X-2X...-2X
o Better convergence behavior than Method 3X-2X-2X...-2X.

TY

e Require more memory, especially for high dimensional case. A
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Yan Xu, USTC IWIS-MASC, October 18, 2015



Conclusion and future work
e Fast solvers for the even and odd equations with LDG
discretization
e The numerical convergence behavior of multigrid method is
investigated.
e Future work
e The theoretical analysis for the convergence behavior of

multigrid method
e Proper preconditioner for the high stiff system.
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Reference

More information about the algorithm and theoretical analysis can
be found in: http://staff.ustc.edu.cn/"yxu/

Thank you!
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