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I. Introduction–Background

• 1837–British Association for the Advancement of Science
(BAAS) sets up a “Committee on Waves”; one of two
members was J. S. Russell (Naval Scientist).

• 1837, 1840, 1844 (Russell’s major effort): “Report on Waves”
to the BAAS–describes a remarkable discovery



Russell-Wave of Translation

• Russell observed a localized wave: “rounded
smooth...well-defined heap of water”

• Called it the “Great Wave of Translation” – later known as
the solitary wave

• “ Such, in the month of August 1834, was my first chance
interview with that singular and beautiful phenomenon...”



Russell: to Mathematicians, Airy

Russell: “... it now remained for the mathematician to predict the
discovery after it had happened...”
Leading British fluid dynamics researchers doubted the importance
of Russell’s solitary wave. G. Airy (below): wave was linear



Stokes

1847–G. Stokes : Stokes worked with nonlinear water wave
equations and found a traveling periodic wave where the speed
depends on amplitude (ambivalent w/r Russell). Stokes made
many other critical contributions to fluid dynamics –“Navier-Stokes
equations”



Boussinesq, Korteweg-deVries

• 1871-77 – J. Boussinesq (left): new nonlinear eqs. and
solitary wave solution for shallow water waves

• 1895 –D. Korteweg (right) & G. deVries: also shallow water
waves (“KdV” eq.); NL periodic sol’n: “cnoidal” wave; limit
case: the solitary wave (also see E. deJager ’06: comparison
Boussinesq – KdV)

• Russell’s work was (finally) confirmed



KdV Equation –1895

KdV eq –1895

1√
gh
ηt + ηx +

3

2h
ηηx +

h2

2
(

1

3
− T̂ )ηxxx = 0

where η(x , t) is wave elevation above mean height h; g is gravity
and T̂ is normalized surface tension (T̂ = T

ρgh2 )



KdV Eq.–con’t

• nondimensional KdV eq.

ut + 6uux + uxxx = 0

• solitary wave:

u = 2κ2sech2κ(x − 4κ2t − x0), κ, x0 const



Solitary wave video

Click for solitary wave video



KdV –Modern Times

• 1895-1960 – Korteweg & deVries (KdV): water waves...

• 1960’s – mathematicians developed approx methods to find
reduced eq governing physical systems; KdV is an important
“universal” eq

• 1960s M. Kruskal: ‘FPU’ (Fermi-Pasta-Ulam, 1955) problem
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with force law: F (∆) = −k(∆ + α ∆2), α const; M.K. finds
KdV eq in the continuum limit



KdV –Modern Times–con’t

• 1965 –computation on KdV eq.

ut + uux + δ2uxxx = 0

N. Zabusky, M. Kruskal introduced the term Solitons

Figure : Calculations of the KdV Eq. with δ2 ≈ 0.02 — from
numerical calculations of ZK 1965



KdV –Modern Times–con’t

Kruskal and Miura study cons laws of KdV eq & modified KdV
(mKdV) eq. Below KdV eq. left; mKdV eq right:

ut + 6uux + uxxx = 0, vt − 6v 2vx + vxxx = 0

Miura finds a transformation between KdV and mKdV:

u = −(vx + v 2)



KdV leads the way to IST

• Miura Transf leads to scattering problem and linearization of
KdV: v = φx/φ

φxx + (k2 + u(x , t))φ = 0, φt = Mφ

k constant

• 1967 – Method to find solution of KdV: Gardner, Greene,
Kruskal, Miura

• 1970’s-present – KdV developments led to new methods &
results in math physics

• Termed Inverse Scattering Transform (IST)–find solitons as
special solutions



KdV Solitary Wave -Soliton

Normalized equation:

ut + 6uux + uxxx = 0

Soliton: us(x , t) = 2κ2 sech2 κ(x − 4κ2t − x0)

One eigenvalue: umax = 2κ2; speed = 2umax , x0 = 0



KdV –Two Soliton Interaction

KdV eq. with two eigenvalues: two solitons

Solitons: speed and amplitude preserved upon interaction



NLS is Integrable

Another important integrable eq. is the nonlinear Schrödinger eq.
(NLS; Zakharov, Shabat, 1971)

iqt = qxx + Vq; V = ±2qq∗(x , t), ∗ = cc

Related to

φx =

(
−ik q(x , t)
r(x , t) ik

)
φ with r(x , t) = ∓q∗(x , t)

φt = Mφ, M = M[q, r ], 2x2

k is constant



‘Nonlocal NLS’ is Integrable

A ‘nonlocal NLS’ eq is integrable:

iqt = qxx + Vq; V = ±2q(x , t)q∗(−x , t)

Nonlocal NLS is related to

φx =

(
−ik q(x , t)
r(x , t) ik

)
φ with r(x , t) = ∓q∗(−x , t)

k is constant; MJA, Z. Musslimani, 2013



II. Compatible linear systems, Lax Pairs 1 + 1d

Lax (1968) considered two operators; i.e. operator ‘pair’– in
general:

Lv = λv

vt =Mv

For KdV

L = ∂2
x + u

M = ux + γ − (2u + 4λ)∂x = γ − 3ux − 6u
∂

∂x
− 4

∂3

∂x3

where γ is const and λ is a spectral parameter with λt = 0
‘isospectral flow’



Lax Pairs –con’t

Take ∂/∂t of Lv = λv :

Ltv + Lvt = λtv + λvt ;

Use vt =Mv

Ltv + LMv = λtv + λMv = λtv +Mλv

= λtv +MLv =>

[Lt + (LM−ML)] v = λtv

Hence to find nontrivial ef v(x , t)

Lt + [L,M] = 0 (La) where [L,M] = LM−ML

if and only if λt = 0; (La) called Lax eq



Compatible Matrix Systems

Extension:

vx = Xv , vt = Tv ;

where v is an n-d vector and X and T are n × n matrices :
X = X[u;λ],T = T[u;λ]

Require compatibility: vxt = vtx , then

Xt − Tx + [X,T] = 0

and require e-value dependence to be isospectral. Above eq more
general than Lax pair: allows more gen’l e-value dependence than
Lv = λv



2× 2 Matrix Systems

Soon after KdV developments and Lax’ ideas, Zakarov-Shabat
(1971) found compatible pair and method of sol’n of NLS. AKNS
(1973) generalized this to class of eq including NLS, mKdV, SG
etc with following.
E-value prob (RHS: X):

v1,x = −ikv1 + q(x , t)v2

v2,x = ikv2 + r(x , t)v1

Time dependence (RHS: T)

v1,t = Av1 + Bv2

v2,t = Cv1 + Dv2

where A, B, C and D functionals of q(x , t), r(x , t) and k



2× 2 Matrix Systems–Special Cases

Note when when r(x , t) = −1, then from

v1,x = −ikv1 + q(x , t)v2

v2,x = ikv2 + r(x , t)v1 = ikv2 − v1

we can solve for v1 in terms of v2; find v2 satisfies:

v2,xx + (k2 + q)v2 = 0

i.e the time independent Schrödinger e-value prob–which is related
to KdV

Method below yields physically interesting NL evolution eq when
r = −1, r = ∓q∗, r = ∓q, q real



2× 2 Matrix Systems–con’t

Consider the 2× 2 compatible matrix system

v1,x = −ikv1 + q(x , t)v2

v2,x = ikv2 + r(x , t)v1

v1,t = Av1 + Bv2

v2,t = Cv1 + Dv2

Namely require vj ,xt = vj ,tx , j = 1, 2, and dk/dt = 0: isospectral
flow

This yields two eq of form: Γ1
j v1 + Γ2

j v2 = 0, j = 1, 2; we take

Γ1
j = Γ2

j = 0



2× 2 Matrix Systems–con’t

This leads to D = −A and three eq for A,B,C

Ax = qC − rB

Bx + 2ikB = qt − 2Aq

Cx − 2ikC = rt + 2Ar

Note the e-value dependence k in coef of B,C 2nd 3rd eq
Look for sol’ns A,B,C in finite powers of k

A =
n∑

j=0

Ajk
j , B =

n∑
j=0

Bjk
j , C =

n∑
j=0

Cjk
j

Substitution yields eq which determine Aj ,Bj ,Cj and leave two
additional constraints: NL evolution eq



2× 2 Matrix Systems–Example

Ax = qC − rB

Bx + 2ikB = qt − 2Aq

Cx − 2ikC = rt + 2Ar

Example: n = 2, A = A2k2 + A1k + A0 etc.
The coefficients of k3 give B2 = C2 = 0; at order k2, we obtain
A2 = a = const etc.
Find after some algebra: coupled NL evoln eq (constarint on sol’ns
of A,B,C eq)

−1

2
aqxx = qt − aq2r

1

2
arxx = rt + aqr 2



2× 2 Matrix Systems–NLS

If r = ∓q∗ and a = 2i , then find:

iqt = qxx ± 2q2q∗ NLS

Both focusing (+) and defocusing (−) cases inlcuded
Summary n = 2 with r = ∓q∗ find

A = 2ik2 ∓ iqq∗

B = 2qk + iqx

C = ±2q∗k ∓ iq∗x

provided that q(x , t) satisfies the NLS eq
and recall: dk/dt = 0: isospectral flow



2× 2 Matrix Systems–con’t

n = 3, A = A3k3 + A2k2 + A1k + A0 etc, find:

A = a3k3 + a2k2 +
1

2
(a3qr + a1)k +

a2

2
qr − ia3

4
(qrx − rqx) + a0

B = ia3qk2 +

(
ia2q − a− 3

2
qx

)
k +

[
ia1q − a2

2
qx +

ia3

4
(2q2r − qxx)

]
C = ia3rk2 +

(
ia2r +

a3

2
rx
)

k +

[
ia1r +

a2

2
rx +

ia3

4
(2r 2q − rxx)

]
aj , j = 0, 1, 2, 3 are arb const. with 2 NL evoln eq (constraints)

qt +
ia3

4
(qxxx − 6qrqx) +

a2

2
(qxx − 2q2r)− ia1qx − 2a0q = 0

rt +
ia3

4
(rxxx − 6qrrx)− a2

2
(rxx − 2qr 2)− ia1rx + 2a0r = 0



2× 2 –KdV,mKdV

With a0 = a1 = a2 = 0, a3 = −4i and r = −1, obtain the KdV eq:

qt + 6qqx + qxxx = 0

If a0 = a1 = a2 = 0, a3 = −4i and r = ∓q, real, obtain the mKdV
eq

qt ± 6q2qx + qxxx = 0

Have already seen: if a0 = a1 = a3 = 0, a2 = −2i and r = ∓q∗,
then we obtain the NLS eq

iqt = qxx ± 2q2q∗



2× 2 –Sine-Gordon, Sinh-Gordon Eq

Another ex. n = −1; take:

A = a(x ,t)
k , B = b(x ,t)

k , C = c(x ,t)
k

Find eq for a, b, c; special cases are

(i) : a =
i

4
cos u, b = −c =

i

4
sin u, q = −r = −1

2
ux

and u satisfies the Sine–Gordon eq:

uxt = sin u

(ii): a = i
4 cosh u, b = −c = − i

4 sinh u, q = r = 1
2 ux

and u satisfies the Sinh–Gordon eq

uxt = sinh u



2× 2– New Symmetry

If r(x , t) = ∓q∗(−x , t) then for quadratic expansion in k find

iqt = qxx ± 2q2(x , t)q∗(−x , t) Nonlocal NLS

or written as

iqt = qxx ± V [q]q(x , t) V [q] = q(x , t)q∗(−x , t)



Schrödinger Eigenvalue Problem

Originally KdV eq was related to the time independent Schrödinger
e-value prob

Same method that works for 2× 2 problem (when r = −1) also
can be used directly
Compatible system:

vxx + (λ+ q)v = 0

vt = Av + Bvx

Compatibility: (vxx)t = (vt)xx yields eq for A,B (coef of v and vx):

Axx − 2Bx(λ+ q)− Bqx + qt = 0

Bxx + 2Ax = 0



Schrödinger Eigenvalue Problem–con’t

To find A,B let:

A =
n∑

j=0

Ajλ
j , B =

n∑
j=0

Bjλ
j

Substituting above into A,B eq and equating powers of λ yields
Aj ,Bj , j=1,2...n, and a constraint which is the NL evol eq.

Ex. n = 1 if take: A1 = 0,A0 = qx , B1 = 4,B0 = −2q find KdV
eq.

qt + 6qqx + qxxx = 0



2× 2–General Class of NL Eq

A,B,C eq are linear eq that be solved for decaying q, r subject to
constraint; find: (

r
−q

)
t

+ 2A∞(L)

(
r
q

)
= 0

where A∞(k) = lim|x |→∞ A(x , t, k); A∞(k) can be the ratio of two
entire functions; L is

L =
1

2i

(
∂x − 2r(I−q) 2r(I−r)
−2q(I−q) −∂x + 2q(I−r)

)

where ∂x ≡ ∂/∂x and (I−f )(x) ≡
∫ x

−∞
f (y)dy



2× 2–General Class of NL Eq–con’t

Ex. A∞(k) = 2ik2 find:

(
r
−q

)
t

= −4iL2

(
r
q

)
= −2L

(
rx
qx

)
= i

(
rxx − 2r 2q
qxx − 2q2r

)
With r = ∓q∗ we have the NLS eq

iqt = qxx ± 2q2q∗ NLS

A∞(k) can be related to the linear dispersion relation of constraint
eq; i.e. if q(x , t) = exp(i(kx − ωq(2k)t)) we find that

A∞(k) = − i

2
ωq(2k)

For NLS ωq(k) = −k2 so A∞(k) = 2ik2



Other Eigenvalue Problems

There have been numerous applications and generalizations of
these method. For example the matrix generalization of 2× 2
system; to N × N systems i.e.

∂v

∂x
= ikJv + Qv,

∂v

∂t
= Tv

where Q are N × N matrices with Q ii = 0,
J = diag(J1, J2, . . . , JN), with J i 6= J j for i 6= j and v(x , t) is an
N-dimensional vector
T is also an N × N matrix and can be expanded in powers of k

Find numerous interesting compatible NL evol eq such as N wave
eq, Boussinesq eq etc.



2 + 1d ‘scattering’ Problems

There are compatible systems in 2 + 1d and discrete systems
In 2 + 1d perhaps the best known is the N × N linear system:

∂v

∂x
= J

∂v

∂y
+ Qv,

∂v

∂t
= Tv

Compatible systems are obtained by expanding T in powers of ∂
∂y

Find N wave, Davey-Stewartson (2× 2 system with r = ∓q∗),
and Kadomstsev-Petviashvili (KP) eq (2× 2 system with r = −1):

(qt + 6qqx + qxxx)x + σ2qyy = 0 KP

where σ2 = ∓1: so called KP I,II eq

In scalar form spatial ‘scattering’ eq is σvy + vxx + uv = 0



Discrete Eigenvalue Problems

Recall the continuous 2× 2 system

v1,x = −ikv1 + q(x , t)v2

v2,x = ikv2 + r(x , t)v1

Discretizing vj ,x ≈
vj,n+1−vj,n

h and calling z = e ikh ≈ 1 + ikh + · · ·
and Qn(t) = hqn,Rn(t) = hrn etc leads to the following discrete
2× 2 eigenvalue problem

v1,n+1 = zv1,n + Qn(t)v2,n

v2,n+1 =
1

z
v2,n + Rn(t)v1,n



Discrete Eigenvalue Problems–con’t

To
v1,n+1 = zv1,n + Qn(t)v2,n

v2,n+1 =
1

z
v2,n + Rn(t)v1,n

we add time dependence

dv1,n

dt
= Av1,n + Bv2,n

dv2,n

dt
= Cv1,n + Dv2,n

Making these two eq compatible and expanding An,Bn,Cn,Dn in
finite Laurent series in z yields NL Evol eq as constraints



Discrete Eigenvalue Problems–con’t

Ex. Expanding
An =

∑2
j=−2 Aj ,nz j similar for Bn,Cn,Dn eventually yields

i
d

dt
Qn = Qn+1 − 2Qn + Qn−1 − QnRn (Qn+1 + Qn−1)

−i
d

dt
Rn = Rn+1 − 2Rn + Rn−1 − QnRn (Rn+1 + Rn−1)

With Rn = ∓Q∗n we have the integrable discrete NLS eq

i
d

dt
Qn = Qn+1 − 2Qn + Qn−1 − |Qn|2 (Qn+1 + Qn−1)

or with Qn(t) = hqn(t)

i
d

dt
qn =

1

h2
(qn+1 − 2qn + qn−1)± |qn|

2 (qn+1 + qn−1)



III. Inverse Scattering Transform (IST) for KdV

Motivation: linear Fourier Transform (FT)
Consider the linear evol eq

ut =
N∑
j=0

aj∂
j
xu, aj ∈ R const

The soln u(x , t) can be found via FT as

u(x , t) =
1

2π

∫
b(k , t)e ikxdk (FT)

where it is assumed that u is smooth and |u| → 0 as |x | → ∞
sufficiently rapidly; unless otherwise specified:

∫
=
∫∞
−∞



FourierTransform–con’t

Substituting FT into linear eq yields (assume interchanges etc)∫
eikx{bt − b

N∑
j=0

(ik)jaj} dk = 0 or bt = b
N∑
j=0

(ik)jaj

So

b(k, t) = b0(k)e−iω(k)t , ω(k) = i
N∑
j=0

(ik)jaj

Typically when ω(k) ∈ R (a2j = 0, j = 0, 1...), it is called the
dispersion relation. Thus the soln is given by

u(x , t) =
1

2π

∫
b0(k)e i [kx−ω(k)t] dk

For u(x , t) ∈ R require symmetry: b∗0(−k) = b0(k)



FourierTransform–Linear KdV

The previous result shows that for the linear KdV eq

ut + uxxx = 0

from u = e i [kx−ω(k)t] the linear dispersion relation is: ω = −k3

and the FT soln is given by

u(x , t) =
1

2π

∫
b0(k)e i [kx+k3t] dk

The soln process via FT is given by

u(x , 0)
direct FT−−−−−→ b(k, 0) = b0(k)yt: time evolution

u(x , t)
inverse FT←−−−−−− b(k, t) = b0(k)e−iω(k)t



IST for KdV

Compatibility of the following system

L : vxx + (λ+ u(x , t))v = 0 and M : vt = (γ+ ux)v + (4λ−2u)vx

where γ=const and λt = 0 yields the KdV eq

ut + 6uux + uxxx = 0 KdV

Soln process via IST:

u(x , 0)
Direct Scattering−−−−−−−−−−→ L : S(k , 0)yt: time evolution: M

u(x , t)
Inverse Scattering←−−−−−−−−−− S(k, t)



Direct Scattering–con’t

Begin with discussion of direct scattering problem. Let λ = k2,
then L (scattering) operator is:

L : vxx +
(
u(x) + k2

)
v = 0

note suppression the time dependence in u. Assume that u(x) ∈ R
and decays sufficiently rapidly, e.g. u lies in the space of functions

L1
n :

∫ ∞
−∞

(1 + |x |n)|u(x)|dx <∞, n ≥ 2

Associated with operator L are 2 sets of efcns for real k that are
bounded for all values of x , and that have appropriate analytic
extensions into UHP–k , LHP–k



Direct Scattering–con’t

Appropriate efcns associated with operator L are defined from their
BCs; i.e. identify 4 efcns defined by the following asymptotic BCs

φ(x ; k) ∼ e−ikx , φ̄(x ; k) ∼ e ikx as x → −∞
ψ(x ; k) ∼ e ikx , ψ̄(x ; k) ∼ e−ikx as x →∞

So, e.g. φ(x , k) is a soln of L eq which tends to e−ikx as x → −∞
etc. Note: φ̄ does not represent cc; rather *=cc
From L and BCs and u(x) ∈ R have symmetries:

φ(x ; k) = φ̄(x ;−k) = φ∗(x ,−k)

ψ(x ; k) = ψ(x ;−k) = ψ∗(x ,−k)



Direct Scattering–con’t

The Wronskian of 2 solns ψ, φ is defined as

W (φ, ψ) = φψx − φxψ

and from Abel’s Theorem, the Wronskian is const.
Hence from ±∞:

W (ψ, ψ̄) = −2ik = −W (φ, φ̄)

Since L is a linear 2nd order ODE, from linear independence of its
solutions we obtain the following completeness relationships
between the efcns

φ(x ; k) = a(k)ψ̄(x ; k) + b(k)ψ(x ; k)

φ̄(x ; k) = −ā(k)ψ(x ; k) + b̄(k)ψ̄(x ; k)

For u(x) ∈ R only need first eq



Direct Scattering–con’t

a(k), b(k) can be expressed in terms of Wronskians:

a(k) =
W (φ(x ; k), ψ(x ; k))

2ik
, b(k) = −W (φ(x ; k), ψ̄(x ; k))

2ik

Thus φ, ψ, ψ̄ determine a(k), b(k) which are part of the ‘scattering
data’
Also have symmetries: a(−k) = a∗(k); b(−k) = b∗(k) and
unitarity:

|a(k)|2 − |b(k)|2 = 1, k ∈ R



Direct Scattering–con’t

It is more convenient to work with modified efcns
M(x ; k),N(x ; k), N̄(x ; k):

M(x ; k) = φ(x ; k)e ikx

N(x ; k) = ψ(x ; k)e ikx , N̄(x ; k) = ψ̄(x ; k)e ikx

Completeness of efcns implies

M(x ; k)

a(k)
= N̄(x ; k) + ρ(k)N(x ; k)

where ρ(k) = b(k)
a(k)

τ(k) = 1/a(k) and ρ(k) are called the transmission and
reflection coefs



Direct Scattering–con’t

ψ(x ; k) = ψ̄(x ;−k) implies N(x ; k) = N̄(x ;−k)e2ikx

Due to this symmetry will only need 2 efcns. Namely, from
completeness:

M(x ; k)

a(k)
= N̄(x ; k) + ρ(k)e2ikx N̄(x ;−k) (∗)

where ρ(k) = b(k)
a(k)

(*) will be a fundamental eq. Later will show that (*) leads to a
generalized Riemann-Hilbert boundary value problem (RH)



Analyticity of Efcns

Theorem
For u ∈ L1

2 :
∫∞
−∞(1 + |x |2)|u| <∞

(i) M(x ; k) and a(k) are analytic fcns of k for Imk > 0 and tend
to unity as |k| → ∞; they are continuous on Imk = 0;

(ii) N̄(x ; k) and ā(k) are analytic fcns of k for Imk < 0 and tend
to unity as |k| → ∞; they are continuous on Imk = 0
Moreover, the solutions of the corresponding integral
equations are unique.

Using Green’s fcn techniques may show that M(x ; k), N̄(x ; k)
satisfy the following Volterra integral eq

M(x ; k) = 1 +
1

2ik

∫ x

−∞

{
1− e2ik(x−ξ)

}
u(ξ)M(ξ; k)dξ

N̄(x ; k) = 1− 1

2ik

∫ ∞
x

{
1− e−2ik(ξ−x)

}
u(ξ)N̄(ξ; k)dξ

Proof: Convergence of Neumann series



Potential and Efcns

From efcn can determine potential u

Using

N̄(x ; k) = 1− 1

2ik

∫ ∞
x

{
1− e−2ik(ξ−x)

}
u(ξ)N̄(ξ; k)dξ

then for Imk ≥ 0, as k →∞, iteration and Reimann-Lesbegue
Lemma implies:

N̄(x ; k) ∼ 1− 1

2ik

∫ ∞
x

u(ξ)dξ (∗∗)



Analyticity, RH Problem and Scattering Data

We will work with

M(x ; k)

a(k)
= N̄(x ; k) + ρ(k)e2ikx N̄(x ;−k) (∗)

where ρ(k) = b(k)
a(k)

Note: LHS: M(x ;k)
a(k) is analytic UHP-k/[zero’s of a(k)]; RHS:

N̄(x ; k) is analytic LHP-k;

We will consider remaining term as the ‘jump’ (change) in
analyticity across Rek axis



Required Scattering Data

Scattering data that will be needed: ρ(k) and information about
zero’s of a(k)

For real u(x) from operator L can show:

a(k) has a finite number of simple zero’s on img axis:
a(kj) = 0; {kj = iκj}, j = 1, ...J;κj > 0;

Note also a(k)→ 1 as k →∞, analytic UHP-k; continuous
Imk = 0

At every zero kj = iκj there are L2 bound states:

φj = φ(x , kj), ψj = ψ(x , kj) such that φj = bjψj => Mj = bjNj ;
for inverse problem we will need: Cj = bj/a′(kj); j = 1, ...J



Next: Inverse Problem

Recall scheme:

u(x , 0)
Direct Scattering−−−−−−−−−−→ L : S(k , 0)yt: time evolution: M

u(x , t)
Inverse Scattering←−−−−−−−−−− S(k, t)

Next consider Inverse problem at fixed time



Inverse Scattering–Projection Operators

Recall

M(x ; k)

a(k)
= N̄(x ; k) + ρ(k)e2ikx N̄(x ;−k) (∗)

(*) is fundamental eq.

Apart from poles at a(kj) = 0, M(x ;k)
a(k) is anal UHP; and N̄(x ; k) is

anal in LHP. (∗) a generalized (RH) prob’; it leads to an integral
eq for N(x ; k)

Use projection operators
Consider the P± projection operator defined by

(P±f )(k) =
1

2πi

∫ ∞
−∞

f (ζ)dζ

ζ − (k ± i0)
= lim

ε↓0

{
1

2πi

∫ ∞
−∞

f (ζ)dζ

ζ − (k ± iε)

}



Projection Operators–con’t

If f (k) = f±(k) is anal in the UHP/LHP-k and f±(k)→ 0 as
|k | → ∞ (for Im k ><0), then from contour integration:

(P±f∓)(k) = 0

(P±f±)(k) = ±f±(k),

To most easily explain ideas, 1st assume that there are no poles,
that is a(k) 6= 0. Then operating on (*) with P−:

P−
[(

M(x ; k)

a(k)
− 1

)]
= P−

[
(N̄(x ; k)− 1) + ρ(k)e2ikx N̄(x ;−k)

]
From Proj: LHS=0 (since assumed no zero’s of a(k)); and
P−

[
(N̄(x ; k)− 1)

]
= −(N̄(x ; k)− 1) implies



Inverse Problem: no poles

N̄(x ; k) = 1 +
1

2πi

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ

ζ − (k − i0)
(E1)

Symmetry: N(x ; k) = e2ikx N̄(x ;−k) => an integral eq

N(x ; k) = e2ikx

{
1 +

1

2πi

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ

ζ + k + i0

}
Reconstruction of the potential u; As k →∞ (E1) implies

N̄(x ; k) ∼ 1− 1

2πik

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ (E2)

From direct integral eq (**): N̄(x ; k) ∼ 1− 1
2ik

∫∞
x u(ξ)dξ;

comparing (**) & (E2):

u(x) = − ∂

∂x

{
1

π

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ

}



Inverse Problem: Including Poles

For the case when a(k) has zeros, one can extend the above result;
suppose

a(kj = iκj) = 0, κj > 0, j = 1, · · · J

then call
Nj(x) = N(x ; kj)

Subtracting the pole contributions and carrying out similar
calculations as before leads to

N(x ; k) = e2ikx

1−
J∑

j=1

CjNj(x)

k + iκj
+

1

2πi

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ

ζ + k + i0





Inverse Problem: Including Poles–con’t
To complete the system, evaluate at k = kp = iκp

N(x ; k) = e2ikx

1−
J∑

j=1

CjNj(x)

k + iκj
+

1

2πi

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ

ζ + k + i0



Np(x) = e−2κpx

1−
J∑

j=1

CjNj(x)

i(κp + κj)
+

1

2πi

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ

ζ + iκp


for p = 1, ...J. Above is a coupled system of integral eq for
N(x , k); {Nj(x) = N(x , kj)}, j = 1, · · · , L
From these eq u(x) is reconstructed from

u(x) =
∂

∂x

2
J∑

j=1

CjNj(x)− 1

π

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ





IST – So Far

So far in the IST process direct and inverse problem have been
discussed.

Direct problem (from operator L): u(x)→ S(k)

Inverse problem: S(k) = {ρ(k), {κj ,Cj} } → u(x)
Direct and inverse problems are the NL analogues of the direct and
inverse Fourier transform

Next need time dependence; recall:

u(x , 0)
Direct Scattering−−−−−−−−−−→ L : S(k , 0)yt: time evolution: M

u(x , t)
Inverse Scattering←−−−−−−−−−− S(k , t)



IST: Time Dependence

For time dependence use associated time evolution operator: M
which for the KdV eq is

vt = Mv = (ux + γ)v + (4k2 − 2u)vx

with γconst. With v = φ(x , k) and using

φ(x , t; k) = M(x , t; k)e−ikx ,

M then satisfies

Mt = (γ − 4ik3 + ux + 2iku)M + (4k2 − 2u)Mx

Also recall

M(x , t; k) = a(k, t)N̄(x , t; k) + b(k , t)N(x , t; k)



IST: Time Dependence
The asymptotic behavior of M(x , t; k) is given by

M(x , t; k)→ 1, as x → −∞
M(x , t; k)→ a(k , t) + b(k , t)e2ikx as x →∞

From

Mt = (γ − 4ik3 + ux + 2iku)M + (4k2 − 2u)Mx

and using the fact that u → 0 rapidly as x → ±∞, find

γ − 4ik3 = 0, x → −∞

at + bte
2ikx = 8ik3be2ikx , x → +∞

and by equating coef of e0, e2ikx find

at = 0, bt = 8ik3b



IST: Time Dependence–con’t

Solving a, b eq yields

a(k, t) = a(k , 0), b(k , t) = b(k , 0) exp(8ik3t) so

ρ(k, t) =
b(k , t)

a(k, t)
= ρ(k, 0)e8ik3t

a(kj) = 0 implies zero’s (evalues) kj which are finite in number,
simple, and lie on the Im axis, also satisfy

kj = iκj = constant, j = 1, . . . , J

Since the evalues are const in time; so this is an “isospectral flow”
Also find the time dependence of the Cj(t) is given by

Cj(t) = Cj(0)e8ik3
j t = Cj(0)e8κ3

j t j = 1, . . . J



IST

Thus we have the time dependence scattering data:

S(k , t) = {ρ(k, t), {κj ,Cj(t)} j = 1, . . . , J}; with

ρ(k , t) = ρ(k , 0)e8ik3t ;κj = const; Cj(t) = Cj(0)e8κ3
j t j = 1, ...J

This completes the IST formulation:

u(x , 0)
Direct Scattering−−−−−−−−−−→ L : S(k , 0)yt: time evolution: M

u(x , t)
Inverse Scattering←−−−−−−−−−− S(k, t)



Inverse Problem: Including Poles–time included
To complete the system, evaluate at k = kp = iκp

N(x , t; k) = e2ikx

1−
J∑

j=1

Cj(t)Nj(x , t)

k + iκj
+

∫ ∞
−∞

ρ(ζ, t)N(x , t; ζ)dζ

2πi(ζ + k + i0)



Np(x , t) = e−2κpx

1−
J∑

j=1

Cj(t)Nj(x , t)

i(κp + κj)
+

∫ ∞
−∞

ρ(ζ, t)N(x , t; ζ)dζ

2πi(ζ + iκp)


for p = 1, ...J. Above is a coupled system of integral eq for
N(x , k); {Nj(x) = N(x , kj)}, j = 1, · · · , L
From these eq u(x) is reconstructed from

u(x , t) =
∂

∂x

2
J∑

j=1

Cj(t)Nj(x , t)− 1

π

∫ ∞
−∞

ρ(ζ, t)N(x , t; ζ)dζ





‘Pure’ Solitons–Reflectionless Potls

‘Pure’ solitons are obtained by assuming ρ(k , 0) = 0 ‘reflectionless’
potentials. From IST–need only the discrete contributions

Np(x , t) = e−2κpx

1−
J∑

j=1

Cj(t)Nj(x , t)

i(κp + κj)

 , p = 1, · · · , J

Above is a linear algebraic system for
{Np(x , t) = N(x , t, kp)}, p = 1, .., J

From these eq u(x , t) is reconstructed from

u(x , t) =
∂

∂x

2
J∑

j=1

Cj(t)Nj(x , t)





IST–One Soliton

When there is only one ev (J = 1) find

N1(x , t)− iC1(0)

2κ1
e−2κ1x+8κ3

1tN1(x , t) = e−2κ1x

which yields N1(x , t) and u(x , t):

N1(x , t) =
2κ1e−2κ1x

2κ1 − iC1(0)e−2κ1x+8κ3
1t

u(x , t) = 2
∂

∂x

{
e8κ3

1t iC1(0)N1(x , t)
}

which leads to the familiar one soliton soln:

u(x , t) = 2κ2
1 sech2

{
κ1(x − 4κ2

1t − x1)
}

where x1 is defined via −iC1(0) = 2κ1 exp(2κ1x1)



Conserved Quantities

May relate a(k), which is a constant of motion, to an infinite
number of conserved quantities from

a(k) =
1

2ik
W (φ, ψ)

=
1

2ik
(φψx − φxψ) = lim

x→+∞

1

2ik

(
φikeikx − φxeikx

)
and developing large k expn for φ(x , t; k) as a functional of u
The first few nontrivial conserved quantities are found to be:

C1 =

∫ ∞
−∞

udx , C3 =

∫ ∞
−∞

u2dx , C5 =

∫ ∞
−∞

(2u3 − u2
x )dx , ...

May use similar ideas to find conservation laws:
∂tTj + ∂xFj = 0, j = 1, 2...



IST–via Gel’fand-Levitan-Marchenko (GLM) Eq

The GLM eq may be derived from the RH formulation
N(x , t; k) is written in terms of a triangular kernel:

N(x , t; k) = e2ikx

{
1 +

∫ ∞
x

K (x , s; t)e ik(s−x)ds

}
Subst above into RH formulation and taking a FT yields

K (x , y ; t)+F (x+y ; t)+

∫ ∞
x

K (x , s; t) F (s+y ; t) ds = 0, y > x

where F (x ; t) =
L∑

j=1

(−i)Cj(t)e−κjx +
1

2π

∫ ∞
−∞

ρ(k , t)e ikxdk

and also find: u(x , t) = 2∂xK (x , x ; t)
May get soliton solns from GLM; Rigorous inverse pb:
Deift-Trubowitz (’79); Marchenko (’86); ...



IV. IST: 2× 2 Systems

Next study following 2× 2 compatible systems:

vx = Lv =

(
−ik q

r ik

)
v

vt = Mv =

(
A B

C −A

)
v

The ‘scattering’ eq may be written in the form:

vx = (ikJ + Q) v where

J =

(
−1 0
0 1

)
, Q =

(
0 q
r 0

)



IST–2× 2 Systems Direct Scattering
Recall: Soln process via IST:

u(x , 0)
Direct Scattering−−−−−−−−−−→ L : S(k , 0)yt: time evolution: M

u(x , t)
Inverse Scattering←−−−−−−−−−− S(k, t)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
For

vx = Lv =

(
−ik q

r ik

)
v

when q, r → 0 sufficiently rapidly as x → ±∞ the efcns are
asymptotic to the solns of

vx ∼
(
−ik 0

0 ik

)
v



Efcns–2× 2 Systems
Key efcns defined by the following BCs:

φ(x , k) ∼
(

1
0

)
e−ikx , φ̄(x , k) ∼

(
0
1

)
e ikx as x → −∞

ψ(x , k) ∼
(

0
1

)
e ikx , ψ̄(x , k) ∼

(
1
0

)
e−ikx as x → +∞

Convenient to work with efcns which have const BCs at infinity:
As x → −∞:

M(x , k) = e ikxφ(x , k) ∼
(

1
0

)
, M̄(x , k) = e−ikx φ̄(x , k) ∼

(
0
1

)
As x →∞:

N(x , k) = e−ikxψ(x , k) ∼
(

0
1

)
, N̄(x , k) = e ikxψ(x , k) ∼

(
1
0

)



Wronskian and Lin Indepence of Efcns

Let u(x , k) =
(
u(1)(x , k), u(2)(x , k)

)T
and

v(x , k) =
(
v (1)(x , k), v (2)(x , k)

)T
be 2 solns of L eq

The Wronskian of u and v is

W (u, v) = u(1)v (2) − u(2)v (1)

which satisfies

d

dx
W (u, v) = 0 => W (u, v) = W0 const

From the asymptotic behavior of the efcns find:

W
(
φ, φ̄

)
= lim

x→−∞
W
(
φ(x , k), φ̄(x , k)

)
= 1

W
(
ψ, ψ̄

)
= lim

x→+∞
W
(
ψ(x , k), ψ̄(x , k)

)
= −1

Thus the solns φ and φ̄ are linearly independent, as are ψ and ψ̄



Efcns and Scattering Data

Completeness of efcns implies

φ(x , k) = b(k)ψ(x , k) + a(k)ψ̄(x , k)

φ̄(x , k) = ā(k)ψ(x , k) + b̄(k)ψ̄(x , k)

It follows that a(k), ā(k), b(k), b̄(k) (scatt data) satisfy:

a(k) = W (φ, ψ), ā(k) = W (ψ̄, φ̄)

b(k) = W (ψ̄, φ), b̄(k) = W
(
φ̄, ψ

)
Also have unitarity:

a(k)ā(k)− b(k)b̄(k) = 1, k ∈ R



Efcns and Scattering Data–con’t

In terms of M,N, M̄, N̄ completeness implies:

M(x , k)

a(k)
= N̄(x , k) + ρ(k)e2ikxN(x , k)

M̄(x , k)

ā(k)
= N(x , k) + ρ̄(k)e−2ikx N̄(x , k)

where the reflection coefficients are

ρ(k) = b(k)/a(k), ρ̄(k) = b̄(k)/ā(k)

The above eqs will be considered as generalized Riemann-Hilbert
(RH) pbs. Need analyticity–next



Efcns–2× 2 Systems: Diff Eq

The fcns M(x , k), N̄(x , k) satisfy the following DE for χ(x , k):

∂xχ(x , k) = ik (J + I)χ(x , k) + (Qχ) (x , k)

while the fcns M̄(x , k),N(x , k) satisfy the DE for χ̄(x , k):

∂x χ̄(x , k) = ik (J− I) χ̄(x , k) + (Qχ̄) (x , k)

where

J =

(
−1 0
0 1

)
, Q =

(
0 q
r 0

)
and I is the 2× 2 identity matrix. Via Green’s fcns methods we
may convert DE to an Integral eq



Efcns–2× 2 Systems: Integral Eq

Efcns can be written in terms of Volterra integral eq:

M(x , k) =

(
1
0

)
+

∫ +∞

−∞
G+(x − x ′, k)Q(x ′)M(x ′, k)dx ′

N(x , k) =

(
0
1

)
+

∫ +∞

−∞
Ḡ+(x − x ′, k)Q(x ′)N(x ′, k)dx ′

M̄(x , k) =

(
0
1

)
+

∫ +∞

−∞
Ḡ−(x − x ′, k)Q(x ′)M̄(x ′, k)dx ′

N̄(x , k) =

(
1
0

)
+

∫ +∞

−∞
G−(x − x ′, k)Q(x ′)N̄(x ′, k)dx ′

with (θ(x) Heaviside fcn):

G±(x , k) = ±θ(±x)

(
1 0
0 e2ikx

)
, Ḡ±(x , k) = ∓θ(∓x)

(
e−2ikx 0

0 1

)



Analyticity of Efcns

Theorem
If q, r ∈ L1(R), then {M(x , k),N(x , k), a(k)} are analytic
functions of k for Imk > 0 and continuous for Imk ≥ 0, while
{M̄(x , k), N̄(x , k), ā(k)} are analytic functions of k for Imk < 0
and continuous for Imk ≤ 0. Moreover, the solutions of the
corresponding integral equations are unique.

Proof: Convergence of Neumann series



Large k Behavior

From the integral equations can compute the asymptotic expn as
k →∞ (in the proper half-plane) for the efcns; find

M(x , k) =

(
1− 1

2ik

∫ x
−∞ q(x ′)r(x ′)dx ′

− 1
2ik r(x)

)
+ O(1/k2)

N̄(x , k) =

(
1 + 1

2ik

∫ +∞
x q(x ′)r(x ′)dx ′

− 1
2ik r(x)

)
+ O(1/k2)

N(x , k) =

( 1
2ik q(x)

1− 1
2ik

∫ +∞
x q(x ′)r(x ′)dx ′

)
+ O(1/k2)

M̄(x , k) =

( 1
2ik q(x)

1 + 1
2ik

∫ x
−∞ q(x ′)r(x ′)dx ′

)
+ O(1/k2)

and a(k) = 1 + O( 1
k ) and ā(k) = 1 + O( 1

k ) as k →∞



Required Scattering Data

Scattering data that will be needed–in general position: ρ(k), ρ̄(k)
and information about zero’s (evalues) of a(k), ā(k)

For general q(x), r(x) proper evalues correspond to L2 bound
states; they are assumed simple and not on the real k axis

At: a(kj) = 0, kj = ξj + iηj , ηj > 0, j = 1, 2, ..., J with

φj(x) = bjψj(x) where φj(x) = φ(x , kj) etc

This implies
Similarly at: ā(k̄j) = 0, k̄j = ξ̄j − i η̄j , η̄j > 0, j = 1, 2, ..., J̄ with

φ̄j(x) = b̄j ψ̄j(x)



Required Scattering Data–con’t

In terms of M,N, M̄, N̄ proper evalues correspond to

Mj(x) = bje
2ikjxNj(x) , M̄j(x) = b̄j e−2i k̄jx N̄j(x)

For the inverse pb require: Cj = bj/a′(kj), C̄j = b̄j/ā′(k̄j)

Scattering data that will be needed:

S(k) = {ρ(k), {kj ,Cj}, j = 1, ..., J; ρ̄(k), {k̄j , C̄j}, j = 1, ..., J̄}



Symmetry Reductions

When r(x) = ∓q∗(x):

N̄(x , k) =

(
N(2)(x , k∗)

∓N(1)(x , k∗)

)∗
, M̄(x , k) =

(
∓M(2)(x , k∗)

M(1)(x , k∗)

)∗
ā(k) = a∗(k∗) , b̄(k) = ∓b∗(k∗) ,

Thus the zeros of a(k) and ā(k) are paired, equal in number:
J̄ = J

k̄j = k∗j , b̄j = −b∗j j = 1, . . . , J

Only have evalues when r(x) = −q∗(x): no evalues when
r(x) = +q∗(x)



Symmetry Reductions–con’t

For r(x) = ∓q(x), q(x) ∈ R:

N̄(x , k) =

(
N(2)(x ,−k)

∓N(1)(x ,−k)

)
, M̄(x , k) =

(
∓M(2)(x ,−k)

M(1)(x ,−k)

)
ā(k) = a(−k) , b̄(k) = ∓b(−k) ,

Thus the zeros of a(k) and ā(k) are paired, equal in number:
J̄ = J

k̄j = −kj , b̄j = −b∗j j = 1, . . . , J

Only have evalues when r(x) = −q(x) ∈ R: no evalues when
r(x) = +q(x)
Since r(x) = −q(x) ∈ R satisfies r(x) = −q(x)∗ both symmetry
conditions hold; so when kj is an evalue so is −k∗j ; i.e. either the
evalues come in pairs: {kj ,−k∗j } or they are pure Img



Symmetry Reductions–con’t

For r(x) = ∓q∗(−x)

N(x , k) =

(
±M(2)(−x ,−k∗)

M(1)(−x ,−k∗)

∗)∗
, N̄(x , k) =

(
±M̄(2)(−x ,−k∗)

M̄(1)(−x ,−k∗)

)∗
and the scattering data satisfies

a(k) = a∗(−k∗), ā(k) = ā∗(−k∗), b̄(k) = ∓b∗(−k∗)

It follows that if kj = ξj + iηj is a zero of a(k) in UHP-k then
−k∗j = −ξj + iηj is also a zero of a(k) in UHP-k etc

Also need data from ‘right’ which relate to data from ‘left’ – will
not go into detail here



Inverse Problem

Recall: Soln process via IST:

u(x , 0)
Direct Scattering−−−−−−−−−−→ L : S(k , 0)yt: time evolution: M

u(x , t)
Inverse Scattering←−−−−−−−−−− S(k, t)

−−−−−−−−−−−−−−−−−−−−−−−
Operating with projection operators on the completeness relations
after subtracting behavior at infinity and pole contributions

M(x , k)

a(k)
= N̄(x , k) + ρ(k)e2ikxN(x , k)

M̄(x , k)

ā(k)
= N(x , k) + ρ̄(k)e−2ikx N̄(x , k)

yields integral eqs



Inverse Problem–Integral Eq

Genl q(x), r(x):

N̄(x , k) =

(
1
0

)
+

J∑
j=1

Cje
2ikjx

k − kj
Nj(x) +

∫ +∞

−∞

ρ(ζ)e2iζxN(x , ζ)dζ

2πi(ζ − (k − i0))

N(x , k) =

(
0
1

)
+

J̄∑
j=1

C̄je
−2i k̄jx

k − k̄j
N̄j(x)−

∫ +∞

−∞

ρ̄(ζ)e−2iζx N̄(x , ζ)dζ

2πi(ζ − (k + i0))

where Nj(x) = N(x , kj), N̄j(x) = N̄(x , k̄j) We close the system by
evaluating above eq at kp and k̄p; p = 1, 2, ..., J resp.

By considering large k behavior from above eq and from direct
Volterra integral eq we find reconstruction formulae for r(x), q(x)



Inverse Problem–Reconstruction Formulae

Genl q(x), r(x):

r(x) = −2i
J∑

j=1

e2ikjxCjN
(2)
j (x) +

1

π

∫ +∞

−∞
ρ(ζ)e2iζxN(2)(x , ζ)dζ

q(x) = 2i
J̄∑

j=1

e−2i k̄jx C̄j N̄
(1)
j (x) +

1

π

∫ +∞

−∞
ρ̄(ζ)e−2iζx N̄(1)(x , ζ)dζ



Inverse Problem–With Symmetry

In each case can simplify prior integral eq with additional
symmetry;
When r(x) = ∓q∗(x) integral eq reduces to

N(x , k) =

(
0
1

)
−

J∑
j=1

C̄je
−2i k̄jx

k − k̄j
N̄j(x)− 1

2πi

∫ +∞

−∞

ρ̄(ζ)e−2iζx N̄(x , ζ)dζ

ζ − (k + i0)

with symmetry:

N(x , k) =

(
N(1)(x , k)

N(2)(x , k)

)
, N̄(x , k) =

(
N(2)(x , k∗)

∓N(1)(x , k∗)

)∗
ρ̄(k) = ∓ρ(k)∗ k ∈ R, k̄j = k∗j , C̄j = ∓C ∗j

Note: system is closed by evaluating above integral eq at
k = kp, p = 1, ..., J



Inverse Problem–With Symmetry–con’t

Recall:

N(x , k) =

(
0
1

)
+

J∑
j=1

C̄je
−2ik∗j x

k − k̄j
N̄j(x)− 1

2πi

∫ +∞

−∞

ρ̄(ζ)e−2iζx N̄(x , ζ)dζ

ζ − (k + i0)

When r(x) = ∓q(x) ∈ R symmetry is:

N(x , k) =

(
N(1)(x , k)

N(2)(x , k)

)
, N̄(x , k) =

(
N(2)(x ,−k)

∓N(1)(x ,−k)

)
ρ̄(k) = ∓ρ(−k) k ∈ R, k̄j = {k∗j ,−kj}, C̄j = ∓Cj



Inverse Problem–With Symmetry–con’t

The case r(x) = ∓q∗(−x) is somewhat more complex since we
need efcns and completeness at both ±∞; in this case:

N(x , k) =

(
±M(2)(−x ,−k∗)

M(1)(−x ,−k∗)

∗)∗
, N̄(x , k) =

(
±M̄(2)(−x ,−k∗)

M̄(1)(−x ,−k∗)

)∗



Inverse Scattering–with Symmetry–con’t

Use:

N(x , k) =

(
0
1

)
+

J∑
`=1

C `N(x , k`)e−2ik`x

k − k`
−
∫ ∞
−∞

ρ(ξ)e−2iξxN(x , ξ)dξ

2πi(ξ − (k + i0))

Since N(x , k) is related to M
∗
(−x , k∗) also use

M(x , k) =

(
0
1

)
+

J∑
`=1

B` M(x , k`)e−2ik`x

k − k`
+

∫ ∞
−∞

R(ξ)e−2iξxM(x , ξ)dξ

2πi(ξ − (k − i0))

And since M(x , k) is related to N∗(−x ,−k∗) this yields an integral
eq for N(x , k) (also have suitable symmetry for scatt data); Trace
formula shows that only b(k) and discrete data needed for
inversion (add’l symmetries: R(k) = ±ρ∗(−k∗),B` = ∓C ∗` ,...)



IST: Next Time Dependence

Soln process via IST:

u(x , 0)
Direct Scattering−−−−−−−−−−→ L : S(k , 0)yt: time evolution: M

u(x , t)
Inverse Scattering←−−−−−−−−−− S(k, t)



IST: 2× 2 Time Dependence

The associated M operator determines the evolution of the efcns
Taking into account BCs φ(x , k , t) satisfies

∂tφ =

(
A− A∞ B

C −A− A∞

)
φ (E )

where A∞ = lim
|x |→∞

A(x , k)

Using completeness and evaluating x →∞:

φ(x , k , t) = b(k , t)ψ(x , k , t) + a(k , t)ψ̄(x , k , t) ∼
(

a(t)e−ikx

b(t)e ikx

)
Then as x →∞, (E) yields:(

ate
−ikx

bte
ikx

)
=

(
0

−2A∞be ikx

)



IST: 2× 2 Time Dependence–con’t

Doing the same for φ̄(x , k, t) find

∂ta = 0, ∂t ā = 0

∂tb = −2A∞b, ∂t b̄ = 2A∞b̄

Thus then zero’s of a(k), ā(k) (evalues) kj , k̄j are const in time
and for ρ(k , t) = b(k , t)/a(k , t); ρ̄ = b̄(k, t)/ā(k , t):

ρ(k , t) = ρ(k , 0)e−2A∞(k)t , ρ̄(k, t) = ρ̄(k, 0)e2A∞(k)t

Similarly find:

Cj(t) = Cj(0)e−2A∞(kj )t , C̄j(t) = C̄j(0)e2A∞(k̄j )t



Solitons–Reflectionless Potls
Can obtain pure soliton solutions; for genl q(x , t), r(x , t) systems
IST with: ρ = 0, ρ̄ = 0 i.e. reflectionless potls; inverse prob
reduces to a linear algebraic system:

N̄l(x , t) =

(
1
0

)
+

J∑
j=1

Cj(t)e2ikjxNj(x , t)

k̄l − kj

Np(x , t) =

(
0
1

)
+

J̄∑
m=1

C̄m(t)e−2i k̄mx N̄m(x , t)

kp − k̄m
,

with reconstruction:

r(x , t) = −2i
J∑

j=1

e2ikjxCj(t)N
(2)
j (x , t)

q(x , t) = 2i
J̄∑

j=1

e−2i k̄jx C̄j(t)N̄
(1)
j (x , t)



One Soliton Solns –With Symmetry

Using the time-dependence of C1(t) and symmetry:
r(x , t) = −q(x , t)∗

General one soliton soln:

q(x) = 2ηe−2iξx+2i ImA∞(k1)t−iψ0 sech [2 (η(x − x0) + ReA∞(k1)t)]

where
k1 = ξ + iη, C1(0) = 2ηe2ηx0+i(ψ0+π/2)



One Soliton Solns With Symmetry–con’t
Special one soliton cases:

i) NLS: r(x , t) = −q∗(x , t), k1 = ξ + iη,A∞(k1) = 2ik2
1

q(x , t) = 2ηe−2iξx+4i(ξ2−η2)t−iψ0 sech [2η (x − 4ξt − x0)]

ii) mKdV:
r(x , t) = −q(x , t) ∈ R, k1 = iη, A∞(k1) = −4ik3

1 = −4η3

q(x , t) = 2η sech
[
2η
(
x − 4η2t − x0

)]
iii) SG: r(x , t) = −q(x , t) ∈ R, k1 = iη, A∞(k1) = i

4k1
= 1

4η

q(x , t) = −ux

2
= −2η sech

[
2η

(
x +

1

4η
t − x0

)]
,

or in terms of u, a simple ‘kink’:

u(x , t) = 4 tan−1exp

[
2η

(
x +

1

4η
t − x0

)]



One Soliton With Symmetry–con’t

Nonlocal NLS: r(x , t) = −q∗(−x , t) : k1 = iη, k̄1 = −i η̄1

C1(t) = C1(0)e+4iη2
1t = |c |e i(ϕ+π/2)e+4iη2

1t , |c| = η1 + η1

C 1(t) = C 1(0)e−4iη2
1t = |c |e i(ϕ+π/2)e−4iη2

1t , |c | = η1 + η1

Find a two parameter ‘breathing’ one soliton solution

q(x , t) = − 2(η1 + η1)e iϕe−4iη2
1te−2η1x

1 + e i(ϕ+ϕ)e4i(η2
1−η2

1)te−2(η1+η1)x

Note |c | = |c| = η1 + η1 eigenvalues and ‘norming’ const related!

1-soliton reduces to NLS 1-soliton when η1 = η1 and ϕ+ ϕ = 0



One Soliton With Symmetry–con’t

Recall: two parameter ‘breathing’ one soliton solution

q(x , t) = − 2(η1 + η1)e iϕe−4iη2
1te−2η1x

1 + e i(ϕ+ϕ)e4i(η2
1−η2

1)te−2(η1+η1)x

Note that there are singularities at x = 0 with:

1 + e i(ϕ+ϕ)e4i(η2
1−η2

1)t = 0 or at

t = tn =
(2n + 1)π − (ϕ+ ϕ)

4(η2
1 − η2

1)
, n ∈ Z

Singularity disappears when η1 = η1 and ϕ+ϕ 6= (2n + 1)π, n = Z



Conserved quantities

a(k , t) is conserved in time; it can be related to the conserved
quantities. This follows from the relation

a(k , t) = lim
x→+∞

φ(1)(x , k ; t)e ikx

and the large k asymptotic expn for the efcn: φ =
(
φ(1), φ(2)

)T
The first few conserved quantities are:

C1 = −
∫

q(x)r(x)dx , C2 = −
∫

q(x)rx(x)dx

C3 =

∫ (
qx(x)rx(x) + (q(x)r(x))2

)
dx

Similar ideas lead to conservation laws



Conserved quantities–con’t

For example, with the reductions r = ∓q∗ these constants of the
motion can be written as

C1 = ±
∫
|q(x)|2 dx , C2 = ±

∫
q(x)q∗x (x)dx

C3 =

∫ (
∓|qx(x)|2 + |q(x)|4

)
dx



Inverse Pb–Triangular Representations: Towards GLM

For general q(x), r(x):

Assuming triangular representations for N, N̄

N(x , k) =

(
0
1

)
+

∫ +∞

x
K (x , s)e ik(s−x)ds, s > x , Imk ≥ 0

N̄(x , k) =

(
1
0

)
+

∫ +∞

x
K̄ (x , s)e−ik(s−x)ds, s > x , Imk ≤ 0

substituting into prior integral eq and taking FTs, GLM eq follow



Inverse Problem–via GLM Eq–con’t

For general q(x), r(x) find

K̄ (x , y) +

(
0
1

)
F (x + y) +

∫ +∞

x
K (x , s)F (s + y)ds = 0

K (x , y) +

(
1
0

)
F̄ (x + y) +

∫ +∞

x
K̄ (x , s)F̄ (s + y)ds = 0

where

F (x) =
1

2π

∫ +∞

−∞
ρ(ξ)e iξxdξ − i

J∑
j=1

Cje
ikjx

F̄ (x) =
1

2π

∫ +∞

−∞
ρ̄(ξ)e−iξxdξ + i

J̄∑
j=1

C̄je
−i k̄jx



GLM: Reconstruction – Symmetry

Reconstruction for general q(x), r(x)

q(x) = −2K (1)(x , x), r(x) = −2K̄ (2)(x , x)

Symmetry reduces the GLM eq; with r(x) = ∓q(x)∗ find

F̄ (x) = ∓F ∗(x), K̄ (x , y) =

(
K (2)(x , y)

∓K (1)(x , y)

)∗
In this case the GLM eq reduces to

K (1)(x , y) = ±F ∗(x+y)∓
∫ +∞

x
ds

∫ +∞

x
ds ′K (1)(x , s ′)F (s+s ′)F ∗(y+s)

for y > x ; When r(x) = ∓q(x) ∈ R then F (x) and
K (x , y) are ∈ R



Conclusion and Remarks

• Discussed: in these lectures:

• Compatible linear systems–Lax Pairs–2× 2 systems

• IST method–nonlinear Fourier transform

• IST associated with KdV

• IST for general q, r : 2× 2 systems

• q, r systems with symmetry:
• r(x , t) = ∓q∗(x , t): NLS
• r(x , t) = ∓q(x , t) ∈ R; mKdV, SG
• r(x , t) = ∓q∗(−x , t): nonlocal NLS

• Not discussed– long time asymptotic analysis where solitons
and similarity solns/Painleve fcns (e.g. for KdV/mKdV) play
important roles



Conclusion and Remarks

• May also carry out IST for many other systems, some
physically interesting

• Higher order and more complex 1 + 1d PDE evolution systems:
N Wave eq; Boussinesq eq

• Nonlocal eq such as Benjamin-Ono (BO) and Intermediate
Long wave eq

• Discrete problems: e.g. Toda lattice, discrete ladder systems,
integrable discrete NLS

• 2 + 1d systems such as Kadomtsev-Petviashvili (KP),
Davey-Stewartson, N Wave systems

• In 2 + 1 there are some important extensions/new ideas
needed for IST: notably DBAR problems: e.g. KPII



References

• References for these lectures
• MJA, B. Prinari and A.D. Trubatch 2004: Discrete and

Continuous NL S Systems
• MJA 2011: Nonlinear Dispersive Waves

• Other Refs:
MJA and H. Segur 1981;
MJA and P. Clarkson 1991;
S. Novikov, S. Manakov, L. Pitaevskii, V. Zakharov 1984;
F. Calogero, A. Degasperis 1982,...


