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|. Introduction—-Background

e 1837-British Association for the Advancement of Science
(BAAS) sets up a “Committee on Waves”; one of two
members was J. S. Russell (Naval Scientist).

o 1837, 1840, 1844 (Russell's major effort): “Report on Waves”
to the BAAS—describes a remarkable discovery




Russell-Wave of Translation

e Russell observed a localized wave: “rounded
smooth...well-defined heap of water”

e Called it the “Great Wave of Translation” — later known as
the solitary wave

e “ Such, in the month of August 1834, was my first chance
interview with that singular and beautiful phenomenon...”



Russell: to Mathematicians, Airy

Russell: “... it now remained for the mathematician to predict the
discovery after it had happened...”

Leading British fluid dynamics researchers doubted the importance
of Russell’s solitary wave. G. Airy (below): wave was linear

[




Stokes

1847-G. Stokes : Stokes worked with nonlinear water wave
equations and found a traveling periodic wave where the speed
depends on amplitude (ambivalent w/r Russell). Stokes made
many other critical contributions to fluid dynamics —"“Navier-Stokes

equations”




Boussinesq, Korteweg-deVries

1871-77 — J. Boussinesq (left): new nonlinear egs. and
solitary wave solution for shallow water waves

1895 —D. Korteweg (right) & G. deVries: also shallow water
waves (“KdV" eq.); NL periodic sol'n: “cnoidal” wave; limit
case: the solitary wave (also see E. deJager '06: comparison
Boussinesq — KdV)

Russell's work was (finally) confirmed




KdV Equation —1895
KdV eq 1895
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where 7(x, t) is wave elevation above mean height h; g is gravity

and T is normalized surface tension (T = —L)
pgh




KdV Eq.—con't

e nondimensional KdV eq.

Ur + 06Uty + Uy =0

e solitary wave:

u = 2r%sech®k(x — 4Kt — xg), K,Xo const



Solitary wave video

Click for solitary wave video



KdV —Modern Times

e 1895-1960 — Korteweg & deVries (KdV): water waves...

e 1960’s — mathematicians developed approx methods to find
reduced eq governing physical systems; KdV is an important
“universal” eq

e 1960s M. Kruskal: ‘FPU" (Fermi-Pasta-Ulam, 1955) problem
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with force law: F(A) = —k(A + o A?),« const;  M.K. finds
KdV eq in the continuum limit



KdV —Modern Times—con't
e 1965 —computation on KdV eq.

Uy + uuy + 52uxxx =0
N. Zabusky, M. Kruskal introduced the term Solitons
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Figure : Calculations of the KdV Eq. with §% ~ 0.02 — from
numerical calculations of ZK 1965



KdV —Modern Times—con't

Kruskal and Miura study cons laws of KdV eq & modified KdV
(mKdV) eq. Below KdV eq. left; mKdV eq right:

Ut + 6UUyx + Uxx = 0, vy — 6V2Vy + Ve = 0

Miura finds a transformation between KdV and mKdV:

u=—(vyx + v?)




KdV leads the way to IST

Miura Transf leads to scattering problem and linearization of
KdV: v = ¢y /o

(bxx + (k2 + U(X7 t))(b = 07 ¢t = M(b
k constant
1967 — Method to find solution of KdV: Gardner, Greene,
Kruskal, Miura
1970's-present — KdV developments led to new methods &
results in math physics

Termed Inverse Scattering Transform (IST)—find solitons as
special solutions



KdV Solitary Wave -Soliton

Normalized equation:
U + OUlUyx + Uy =0
Soliton:  ws(x, t) = 2k2 sech? k(x — 4Kt — xg)

One eigenvalue: Upmax = 2K%; speed = 2Upmax, X0 =0

x=0.5

ol



KdV —Two Soliton Interaction

KdV eq. with two eigenvalues: two solitons

Solitons: speed and amplitude preserved upon interaction



NLS is Integrable

Another important integrable eq. is the nonlinear Schrédinger eq.
(NLS; Zakharov, Shabat, 1971)

iqr = gxx + Vg, V = £2qq"(x,t), * = cc

Related to
Ox = < r_(f, ) q(j(k’ ) ) ¢ with r(x,t) = Fq"(x,t)

¢t:M¢7 M:M[q)r]72X2

k is constant



‘Nonlocal NLS' is Integrable

A ‘nonlocal NLS' eq is integrable:

iqe = g + Vg,V = £2q(x, t)q"(—x, t)
Nonlocal NLS is related to

P < f_(l>f t) q(;(k’ i >¢ with r(x,t) = F¥q"(—x, t)

k is constant; MJA, Z. Musslimani, 2013



II. Compatible linear systems, Lax Pairs 1 + 1d

Lax (1968) considered two operators; i.e. operator 'pair'— in
general:

Lv =Av
Vt:MV
For KdV
L=0%+u
M=uc+v—(u+4\)0x =~ —3u —6u2—4a—3
=TT x =1 x Ox 0x3

where 7 is const and A is a spectral parameter with Ay =0
‘isospectral flow’



Lax Pairs —con't

Take 0/0t of Lv = Av:
Liv+ Lve = Av + Avg,
Use vy = Mv

Lev+ LMv = A v + IMv = Av + MAv
:)\tV+M£V =>

[Ce+ (LM — ML) v = A\pv

Hence to find nontrivial ef v(x, t)
Li+[L,M]=0 (La) where [L,M]=LM — ML

if and only if As = 0; (La) called Lax eq



Compatible Matrix Systems

Extension:

vy = Xv, vi = Tv;

where v is an n-d vector and X and T are n X n matrices :
X =X[u; A\, T = TJu; A\

Require compatibility: vys = vix, then

Xe— T+ [X,T] =0

and require e-value dependence to be isospectral. Above eq more
general than Lax pair: allows more gen'l e-value dependence than
Lv =My



2 x 2 Matrix Systems

Soon after KdV developments and Lax’ ideas, Zakarov-Shabat
(1971) found compatible pair and method of sol'n of NLS. AKNS
(1973) generalized this to class of eq including NLS, mKdV, SG
etc with following.

E-value prob (RHS: X):

vix = —ikvi + q(x, t)wv

ox = ikva+ r(x, t)vg
Time dependence (RHS: T)

vi,t = Avi + Bw
ot = Cvi + Dvo

where A, B, C and D functionals of g(x, t), r(x,t) and k



2 x 2 Matrix Systems—Special Cases

Note when when r(x, t) = —1, then from
vix = —ikvi + q(x, t)v2
Vox = ikvo + r(x, t)vy = ikvo — vq

we can solve for v; in terms of vo; find v, satisfies:

V2 xx + (k2 + Q)Vz =0
i.e the time independent Schrodinger e-value prob—which is related
to KdV

Method below yields physically interesting NL evolution eq when
r=-1, r=%q* r =Fq, q real



2 x 2 Matrix Systems—con’t

Consider the 2 x 2 compatible matrix system

vix = —ikvi + q(x, t)wv

ox = ikva+ r(x, t)vg

vit = Avy + Bwy

ot = Cvi + Dwy
Namely require vj .+ = vj &, j = 1,2, and dk/dt = 0: isospectral
flow
This yields two eq of form: F}vl + Ffvz =0, j=1,2; we take
M=r;=o



2 x 2 Matrix Systems—con’t

This leads to D = —A and three eq for A, B, C

A,=qC—1rB
By + 2ikB = q: — 2Aq
Cx — 2ikC = ry + 2Ar

Note the e-value dependence k in coef of B, C 2nd 3rd eq
Look for sol'ns A, B, C in finite powers of k

A:zn:Ajkj, B:isjkf, C:icjkf
j=0 j=0 j=0

Substitution yields eq which determine A;, B;, C; and leave two
additional constraints: NL evolution eq



2 X 2 Matrix Systems—Example

A, =qC—rB

By + 2ikB = q; — 2Aq

Cx — 2ikC = r; + 2Ar

Example: n =2, A= Ak? + Ak + Ag etc.
The coefficients of k3 give B, = C, = 0; at order k2, we obtain

A> = a = const etc.
Find after some algebra: coupled NL evoln eq (constarint on sol'ns

of A, B, C eq)
—54qxx = qt — aq2r
2

Earxx =+ aqr2



2 x 2 Matrix Systems—NLS

If r = Fq* and a = 2/, then find:
iq: = G £2q°q°  NLS

Both focusing (+) and defocusing (—) cases inlcuded
Summary n = 2 with r = F¢* find

A = 2ik? F igq*
B =2gk + igx
C ==+2q"k F iq;

provided that g(x, t) satisfies the NLS eq
and recall: dk/dt = 0: isospectral flow



2 x 2 Matrix Systems—con’t
n=3, A= Azk3+ Ark® + Atk + Aq etc, find:

1 a ia
A = azk® + apk® + §(a3qr +a1)k + Zar— —3(qu — rgx) + ao

2
. . a—3 . ia
B = iazqk® + (lazq - 2qx> k + [/alq > 2+ —3(2q r— qxx):|
C = iagrk® + <i32f + %rx> k + {/alr + = > rx + 13—3(2r qg-— rxx)]

aj,j =0,1,2,3 are arb const. with 2 NL evoln eq (constraints)

ar .
+ —(Qxx — 2q2f) —1a1q9x — 230q =0

ia3

4 (qxxx - 6qqu)
ia a .
re + f(rXXx —6qrry) — Ez(rxx - 2qr2) —iairx +2apr =0



2 x 2 =KdV,mKdV

With ag = a1 = a, =0, a3 = —4/ and r = —1, obtain the KdV eq:

qf+6qqx + Qxxx = 0

If a9 = a1 =a» =0, a3 = —4i and r = Fq, real, obtain the mKdV
€q

qt :l: 6q2qX + qXXX - 0
Have already seen: if a9 = a; = a3 =0, ap = —2i and r = Fq~,
then we obtain the NLS eq

iq: = G = 24°q"



2 x 2 =Sine-Gordon, Sinh-Gordon Eq

Another ex. n = —1; take:

_a(x,t) _ b(x,t) _c(x,t)
A==, B = =7, C==7
Find eq for a, b, c; special cases are

. i i

(i): a=-cosu, b= —c=-sinu,

4 4
and u satisfies the Sine—Gordon eq:
Uyt = SINU
(ii): a=icoshu, b= —c= —4fsinhu,

and u satisfies the Sinh—Gordon eq

Uyt = sinh u

Q
Il

N[ =



2 x 2— New Symmetry

If r(x,t) = F¢*(—x, t) then for quadratic expansion in k find

ig: = gxx £ 2¢%(x, t)g*(—x,t)  Nonlocal NLS

or written as

iqr = G = V[qlq(x, t)  V[g] = q(x, t)g"(—x, t)



Schrodinger Eigenvalue Problem

Originally KdV eq was related to the time independent Schrodinger
e-value prob

Same method that works for 2 x 2 problem (when r = —1) also
can be used directly
Compatible system:
Ve F(A+q)v=0
vi = Av + By,
Compatibility: (vix): = (vi)xx Yields eq for A, B (coef of v and vy):

AXX - 2BX()\+ q) - qu+ at = 0
B +2A, =0



Schrodinger Eigenvalue Problem—con't

To find A, B let:

A= ZH:AJ-AJ, B = Z BN
j=0 j=0

Substituting above into A, B eq and equating powers of \ yields
Aj,Bj, j=1,2...n, and a constraint which is the NL evol eq.

Ex. n=1if take: Ay =0,A0 = qx, Bi =4,By=—2qg find KdV
eq.

q: + 6CICIx + Quxx = 0



2 x 2—General Class of NL Eq

A, B, C eq are linear eq that be solved for decaying g, r subject to

constraint; find:
( ’ ) +2AOO(L)< r):o
-q /, q

where Ao (k) = lim| o0 A(X, t, k); Aso(k) can be the ratio of two
entire functions; L is

_ 1/ 0x—2r(l-q) 2r(1-r)
L=35i < -2q(l-q)  —0x +2q(l-r) )

X

where 0y = 0/0x and (I-f)(x) = / f(y)dy

—0o0



2 x 2—General Class of NL Egq—con’t

Ex. As(k) = 2ik? find:

_ 9,2
(o) = (e) =5 ) - (%)
—q t q ax qxx_2qr
With r = Fg* we have the NLS eq

iqr = g £2q°q"  NLS

Aso(k) can be related to the linear dispersion relation of constraint
eq; i.e. if q(x,t) = exp(i(kx — wq(2k)t)) we find that

Ass(K) = — 20q(2K)

For NLS wq(k) = —k? so Ax(k) = 2ik?



Other Eigenvalue Problems

There have been numerous applications and generalizations of
these method. For example the matrix generalization of 2 x 2
system; to N x N systems i.e.

ov ov

I ikJv + Quv, 9 = Tv

where Q are N x N matrices with Q" = 0,

J =diag(J}, J2,...,JN), with J' # J for i # j and v(x, t) is an
N-dimensional vector

T is also an N x N matrix and can be expanded in powers of k

Find numerous interesting compatible NL evol eq such as N wave
eq, Boussinesq eq etc.



2 + 1d ‘scattering’ Problems

There are compatible systems in 2 + 1d and discrete systems
In 2 4+ 1d perhaps the best known is the N x N linear system:

ov ov ov
a—J@‘i‘QV, E—TV

Compatible systems are obtained by expanding T in powers of %

Find N wave, Davey-Stewartson (2 x 2 system with r = F¢g*),
and Kadomstsev-Petviashvili (KP) eq (2 x 2 system with r = —1):
(9t +6Gx + Goc)x +0°qy =0 KP

where 02 = F1: so called KP 1,1l eq

In scalar form spatial ‘scattering’ eq is ov, + vy + uv =0



Discrete Eigenvalue Problems

Recall the continuous 2 x 2 system

vix = —ikvi + q(x, t)wv
vox = ikva+r(x, t)vg

Discretizing v; x ~ ‘/J"Lh_vj” and calling z = e*" ~ 1 + ikh + - --
and Qu(t) = hgn, Rn(t) = hr, etc leads to the following discrete
2 x 2 eigenvalue problem

Vi,ntl = ZVip + Qn(t)Vz’n

1
V2. nt+1 = ;V2,n + Rn(t)vl,n



Discrete Eigenvalue Problems—con’t

To
Vint1 = 2Vi,n + Qn(t)vo,n

1
V2 n+1 = ;VZ,n + Rn(t)Vl,n
we add time dependence

dVl,n

dt = AVl,n + BVZ,n
dvo
77” = CVl,n + DV2,n

Making these two eq compatible and expanding A,, By, C», Dy in
finite Laurent series in z yields NL Evol eq as constraints



Discrete Eigenvalue Problems—con’t

Ex. Expanding

A, = Zf:_z Ajnzl  similar for By, Cp, D, eventually yields

d
/EQn - Qn—l—l - 2Qn + Qn—l - Qan (Qn+1 + Qn—l)

d
_iaRn - Rn+1 - 2'L_\>n + Rn—l - Qan (Rn+1 + Rn—l)

With R, = FQ;; we have the integrable discrete NLS eq

%]
dt

or with Qn(t) = hgs(t)

Qn — QnJrl - 2Qn + anl - |Qn|2 (QnJrl + anl)

, 1
i—2n =75 (Gni1 = 200+ Gp1) £ 19,12 (Gns1 + Gn_1)



Il Inverse Scattering Transform (IST) for KdV

Motivation: linear Fourier Transform (FT)
Consider the linear evol eq

N
uy = Z aj(‘})’;u, aj € R const
j=0
The soln u(x, t) can be found via FT as

1 .

t)=— [ b(k,t)e™dk (FT
uxit) = 5 [ bl o)k (FT)
where it is assumed that v is smooth and |u| — 0 as |x| — oo
sufficiently rapidly; unless otherwise specified: [ = ffooo



FourierTransform—con't
Substituting FT into linear eq yields (assume interchanges etc)
/ ™ { by —bz (ikyaj}dk =0 or b, = bz (iky
j=0
So
N
b(k,t) = bg(k)e @kt =iy (ikYaj

Jj=0

Typically when w(k) € R (apj =0,/ =0,1...), it is called the
dispersion relation. Thus the soln is given by

u(x, t) = % / bo(k) el gy

For u(x,t) € R require symmetry: bj(—k) = bo(k)



FourierTransform—Linear KdV

The previous result shows that for the linear KdV eq

Ut + U = 0
from wu = e/« (k) the linear dispersion relation is: w = —k3

and the FT soln is given by

1 ; 3
t) = — [ bo(k)e'lrd gk
ulxit) = 5 [ (ke
The soln process via FT is given by

u(x, 0) direct FT

b(k,0) = bo(k)

l t: time evolution

u(x, t) <P bk, t) = bo(k)e~ @Kt



IST for KdV

Compatibility of the following system
L: vix+(A+u(x,t))v=0 and M : vy = (v+ ux)v + (4X —2u) vy
where y=const and A; = 0 yields the KdV eq

U + 6uly + Uy =0 KdV

Soln process via IST:

Direct Scattering
—>

u(x,0) L:S(k,0)

lt: time evolution: M

Inverse Scattering
(_

u(x7 t) S(k, t)



Direct Scattering—con't

Begin with discussion of direct scattering problem. Let A\ = k2,
then L (scattering) operator is:

L: v+ (u(x)+ k*)v=0

note suppression the time dependence in u. Assume that u(x) € R
and decays sufficiently rapidly, e.g. u lies in the space of functions

o0

L / (T+ [x|")]u(x)|dx < o0, n>2
—00

Associated with operator L are 2 sets of efcns for real k that are

bounded for all values of x, and that have appropriate analytic
extensions into UHP-k, LHP-k



Direct Scattering—con't

Appropriate efcns associated with operator L are defined from their
BCs; i.e. identify 4 efcns defined by the following asymptotic BCs

D(x; k) ~ e R p(x; k) ~ ™ as x = —o0

Y(x; k) ~ ™ h(x; k) ~ e ' as x = oo

So, e.g. #(x, k) is a soln of L eq which tends to e " as x — —o0
etc. Note: ¢ does not represent cc; rather *=cc
From L and BCs and u(x) € R have symmetries:

o(x; k) = ¢(x; —k) = ¢*(x, —k)
Y(x; k) = Y(x; —k) = ¥*(x, —k)



Direct Scattering—con't
The Wronskian of 2 solns v, ¢ is defined as

W(¢, 1/1) = PPx — O

and from Abel's Theorem, the Wronskian is const.
Hence from +o0:

Since L is a linear 2nd order ODE, from linear independence of its
solutions we obtain the following completeness relationships
between the efcns

P(x; k) = a(k)y(x; k) + b(k)(x; k)
d(x; k) = —a(k)p(x; k) + b(k)p(x; k)

For u(x) € R only need first eq



Direct Scattering—con't

a(k), b(k) can be expressed in terms of Wronskians:

W(é(x; k), 1b(x; k))
2ik

W(o(x; k), 1b(x; k))

a(k) = ik , b(k) = —

Thus ¢, 1,1 determine a(k), b(k) which are part of the ‘scattering
data’

Also have symmetries: a(—k) = a*(k); b(—k) = b*(k) and
unitarity:

|a(K)? = |b(k)P =1, keR



Direct Scattering—con't

It is more convenient to work with modified efcns

M(x; k), N(x; k), N(x; k):

M(x; k) = ¢(x; k)e'**
N(x; k) = (x; k)e™, N(x; k) = (x; k)e™

Completeness of efcns implies

M(x; k) = .
) N(x; k) + p(k)N(x; k)

where  p(k) = SE:?

7(k) = 1/a(k) and p(k) are called the transmission and
reflection coefs




Direct Scattering—con't

Y(x; k) = (x; —k) implies  N(x; k) = N(x; —k)e?**

Due to this symmetry will only need 2 efcns. Namely, from
completeness:

MUK — R k) + o0 R —k) - (+)

where p(k) = Sgg

(*) will be a fundamental eq. Later will show that (*) leads to a
generalized Riemann-Hilbert boundary value problem (RH)



Analyticity of Efcns

Theorem
Forue L} : [% (1+ |x]})]u| < oo

(i) M(x; k) and a(k) are analytic fcns of k for Imk > 0 and tend
to unity as |k| — oo, they are continuous on Imk = 0;

(i) N(x; k) and a(k) are analytic fcns of k for Imk < 0 and tend
to unity as |k| — oo, they are continuous on Imk = 0
Moreover, the solutions of the corresponding integral
equations are unique.

Using Green's fcn techniques may show that M(x; k), N(x; k)
satisfy the following Volterra integral eq

M(x;k) = 1+ ﬁ ) {1 . e2"’<(X*€)} u(€)M(E; k)de
N(x; k) = 1— i h {1 — e—2fk(€—X>} u(§)N(E; k)de

Proof: Convergence of Neumann series



Potential and Efcns

From efcn can determine potential u
Using

_ 1 [ . _
M(xik)=1— 5 {1 - e—z'k@—x)} u(€)N(E; k)de
/ X
then for Imk > 0, as k — oo, iteration and Reimann-Lesbegue
Lemma implies:
_ 1 [

N(x; k) ~1— ik u(€)ds ()



Analyticity, RH Problem and Scattering Data

We will work with
M(x; k)
a(k)

where p(k) = ggz;

Note: LHS: A/;(():)k) is analytic UHP-k/[zero's of a(k)]; RHS:

N(x; k) is analytic LHP-k;

= Ri(x; k) + p(K)2 N —K) - (+)

We will consider remaining term as the ‘jump’ (change) in
analyticity across Rek axis



Required Scattering Data

Scattering data that will be needed: p(k) and information about
zero's of a(k)

For real u(x) from operator L can show:

a(k) has a finite number of simple zero’s on img axis:

a(kj) =0; {kj=irj},j=1,..J;k; >0;

Note also a(k) — 1 as k — oo, analytic UHP-k; continuous

Imk =0

At every zero k; = ik there are L2 bound states:

®; = ¢(x, ki), 1bj = ¥(x, kj) such that ¢; = bjy; => M; = b;N;;

for inverse problem we will need: C; = b;/a'(kj);j =1,...



Next: Inverse Problem

Recall scheme:

Direct Scattering
—>

u(x,0) L:S(k,0)

lt: time evolution: M

Inverse Scattering
%

u(x7 1_‘) S(k, t)

Next consider Inverse problem at fixed time



Inverse Scattering—Projection Operators

Recall
M(x; k)
a(k)
(*) is fundamental eq.
Apart from poles at a(k;) = 0, A/L((’Z)k) is anal UHP; and N(x; k) is

anal in LHP. (x) a generalized (RH) prob’; it leads to an integral
eq for N(x; k)

— (i k) + p(k) e Ri(x —k) (%)

Use projection operators
Consider the P* projection operator defined by

1 [~ f(Qd¢ L[> f(Q)d¢
(PE(k) = 2m/oo<—(kii0)!iﬂ{%/_ooc—(kife)}



Projection Operators—con't

If (k) = fi(k) is anal in the UHP/LHP-k and fi(k) — 0 as
|k| = oo (for Im kZ0), then from contour integration:
(P=fe)(k) =0
(P=Ee) (k) = £ (k),

To most easily explain ideas, 1st assume that there are no poles,
that is a(k) # 0. Then operating on (*) with P~:

(R P

From Proj: LHS=0 (since assumed no zero's of a(k)); and

P~ [(N(x; k) — 1)] = —(N(x; k) — 1) implies



Inverse Problem: no poles

Symmetry:  N(x; k) = e N(x; —k) => an integral eq

. 1 e N(x:()d
N(X; k) _ eZlkx {1 + 27”/_ p(é-)—’— l(<X+CI)O C}

Reconstruction of the potential u; As k — oo (E1) implies

_ 1 oo

Mok~ 1= [ pON(QdC (E2)

From direct integral eq (**):  N(x; k) ~ 1 — 5 [>° u(€)d¢;
comparing (**) & (E2):

™

o) =52 [~ st crac)



Inverse Problem: Including Poles

For the case when a(k) has zeros, one can extend the above result;
suppose
a(kj:iﬁj)zo, I€j>0, j:].,"'J

then call

N;(x) = N(x; kj)
Subtracting the pole contributions and carrying out similar
calculations as before leads to

N i GNi(x) , 1 /°° PON(x: Q)d¢

S kting 2mi ) CHkFi0



Inverse Problem: Including Poles—con't
To complete the system, evaluate at k = k, = ixp

J
LY 2ikx 1 [ p(QN(x; ¢)d¢
N(xik) = e { E 2m/ooc+k+i0}
o —2kpx GNi(x) > p(QN(x; €)d¢
Np(x) = €2 { JZ:;/ np—i-/ij) 2mi /_OO C+ikp }

forp=1,...J. Above is a coupled system of integral eq for

N(x, k) {Nj(x) = N(x, kj)},j = 1,---, L
From these eq u(x) is reconstructed from

J x
i{ > an -2/ p<<)/v(x;<)d<}



IST — So Far

So far in the IST process direct and inverse problem have been
discussed.

Direct problem (from operator L): u(x) — S(k)

Inverse problem: S(k) = {p(k), {xj, G} } = u(x)

Direct and inverse problems are the NL analogues of the direct and
inverse Fourier transform

Next need time dependence; recall:

Direct Scattering
—>

U(X,O) LS(k,O)

lt: time evolution: M

Inverse Scattering
%

u(x7 t) S(k7 t)



IST: Time Dependence

For time dependence use associated time evolution operator: M
which for the KdV eq is

Vi = Mv = (ux 4+ 7)v + (4k* — 2u) vy
with yconst. With v = ¢(x, k) and using
d(x, t; k) = M(x, t; k)e™**,
M then satisfies
M; = (v — 4ik® + uy + 2iku)M + (4k? — 2u) M,
Also recall

M(x, t; k) = a(k, t)N(x, t; k) + b(k, t)N(x, t; k)



IST: Time Dependence
The asymptotic behavior of M(x, t; k) is given by

M(x,t; k) — 1, as X — —o0
M(x, t; k) — a(k, t) + b(k, t)e?Hx as X — 00

From
M, = (y — 4ik® + uy + 2iku)M + (4k? — 2u) M,
and using the fact that v — 0 rapidly as x — +o00, find
v —4ik> =0, x— —00

ar + bpe®™ = 8ik>be™,  x — +o0

and by equating coef of €, e2** find

a; =0, by = 8ik3b



IST: Time Dependence—con't
Solving a, b eq yields
a(k,t) = a(k,0),  b(k,t) = b(k,0)exp(8ik3t) so

0= S

a(kj) = 0 implies zero's (evalues) k; which are finite in number,
simple, and lie on the Im axis, also satisfy

— p(k, 0)68ik3t

ki = ixj = constant, j=1...,J

Since the evalues are const in time; so this is an “isospectral flow’
Also find the time dependence of the C;(t) is given by

Gi(t) = G(0)e®™ = C(0)e®It  j=1,...J



IST

Thus we have the time dependence scattering data:

S(k,t) ={p(k,t), {r;,C(t)} j=1,...,J}; with

p(k,t) = p(k,0)e8°t: i, = const; C;(t) = C;(0)e® 7 j=1,...
This completes the IST formulation:

Direct Scattering
—_>

u(x,0) L:S5(k,0)

t: time evolution: M

Inverse Scattering
u(x,t) —————

S(k,t)



Inverse Problem: Including Poles—time included
To complete the system, evaluate at k = k, = ixp

J

N(x, t; k) = 2% {1 = G(t)N;(x, t) +/°o p(S; t)N(x, t; C)dC}

= k + iK; oo 2mi(C+ k+i0)

J

Np(x, t) = e 2reX {1 — Z M + /OO p(¢: t)N(x, t;C)dC}

i(kp + Kj) oo 2mi(C + iKp)

j=1

forp=1,...J. Above is a coupled system of integral eq for
N(x, k); {Nj(x) = N(x, kj)},j=1,---,L
From these eq u(x) is reconstructed from



‘Pure’ Solitons—Reflectionless Potls

‘Pure’ solitons are obtained by assuming p(k,0) = 0 ‘reflectionless’
potentials. From IST—need only the discrete contributions

J
_ Ci(t)Nj(x,t)
2KpX o J J\ ..
Np(x,t) =e 1 jEZl 7’,0% ) ( p=1,---,J

Above is a linear algebraic system for
{Np(x,t) = N(x,t, kp)},p=1,...,J

From these eq u(x, t) is reconstructed from

J

u(x, t) = 22(,'1



IST—One Soliton

When there is only one ev (J = 1) find
iC1(0)

Nl(X, t) _ e—2f<1x+8f<§tN1 (X, t) — e—2mx

2/4,1
which yields Ni(x, t) and u(x, t):
2&16_2'{1)(

N t)=
1(x, 1) 2y — I-Cl(o)e_mejLS@t

0
u(x, t) = 25 {e&f?f/cl(owl(x, t)}
X
which leads to the familiar one soliton soln:
u(x, t) = 2x3 sech? {k1(x — 4K3t — x1)}

where x; is defined via —iC1(0) = 2k exp(2k1x1)



Conserved Quantities

May relate a(k), which is a constant of motion, to an infinite
number of conserved quantities from

(k) = 5 W(,0)

1 ) 1
= ﬂ(@mpx - ngQ[)) = lim —

x—+o00 21k

<¢ikeikx _ ¢Xeikx>

and developing large k expn for ¢(x, t; k) as a functional of u
The first few nontrivial conserved quantities are found to be:

Clz/ udx, C3:/ u?dx, C5:/ u® — u?)dx, ...

May use similar ideas to find conservation laws:
0:Tj+0xFj =0, j=1,2...



IST—via Gel'fand-Levitan-Marchenko (GLM) Eq

The GLM eq may be derived from the RH formulation
N(x, t; k) is written in terms of a triangular kernel:

N(x, t; k) = e*** {1 —|—/ K(x,s; t)eik(s_x)ds}
Subst above into RH formulation and taking a FT yields
K(x,y; t)+F(x+y; t)+/ K(x,s;t) F(st+y;t)ds =0, y > x

L 00

. —KjX 1 ikx
where F(x;t) =Y (=i)Cj(t)e ™ +27r/ ok, t)e™ dk

j=1 oo

and also find: u(x, t) = 204K (x, x; t)
May get soliton solns from GLM; Rigorous inverse pb:
Deift-Trubowitz ('79); Marchenko ('86); ...



V. IST: 2 x 2 Systems

Next study following 2 x 2 compatible systems:

vX:Lv:<rlk /'7<>V

A B
vi = Mv = c _A v

The ‘scattering’ eq may be written in the form:

vx = (ikJ +Q) v where

=(5 1) e=(79)



IST-2 x 2 Systems Direct Scattering

Recall: Soln process via IST:

U(X, 0) Direct Scattering L S(k, 0)

lt: time evolution: M

U(X, t) Inverse Scattering S(k, t)

o[~k g
vX—Lv—< , ik>v

when g, r — 0 sufficiently rapidly as x — £oo the efcns are
asymptotic to the solns of

—ik 0
Vx o ik )Y



Efcns—2 x 2 Systems
Key efcns defined by the following BCs:

d(x, k) ~ ( (1) > e ik B(x, k) ~ ( (1) > elkx as x — —00
W(x, k) ~ < (1) > elkx. P(x, k) ~ < é > e ihx as x — +00

Convenient to work with efcns which have const BCs at infinity:
As x — —o0:

M(x, K) = e (x, k) ~ ( . ) L W, k) = e 3(x, k) ~ ( 0 )
As x — oo:

N(x, k) = e ®(x, k) ~ ( (1) > , N(x, k) = e™(x, k) ~ ( (1) >



Wronskian and Lin Indepence of Efcns
Let u(x, k)= (u(l)(x7 k), u®(x, k))T and

v(x, k) = (v (x, k), v@(x, k))T be 2 solns of L eq
The Wronskian of u and v is

W (u,v) = D2 _ 2,0
which satisfies

diW(u, v) =0=> W(u,v) = Wy const
x

From the asymptotic behavior of the efcns find:

W(b¢) = lim W(é(x k), é(x.k)) =1
W(ﬂ%@z) = xﬂTooW(w(X’ k)ad_)()@k)) =-1

Thus the solns ¢ and ¢ are linearly independent, as are ¢ and v



Efcns and Scattering Data

Completeness of efcns implies

¢(x, k) = b(k)v(x, k) + a(k)d(x, k)
¢(x, k) = a(k)p(x, k) + b(k)v(x, k)
It follows that a(k),a(k), b(k), b(k) (scatt data) satisfy:

- 3(0) = W(7.9)
b(k) = W(d,¢),  b(k)=W(¢,¢)



Efcns and Scattering Data—con't

In terms of M, N, M, N completeness implies:

M(x, k) = ihox

_a(k) = N(x, k)+p(k)e2k N(x, k)
M(x, k) _ ol ®

a(k) = N(x, k) + p(k)e 2 N(x, k)

where the reflection coefficients are
p(k) = b(k)/a(k),  p(k) = b(k)/a(k)

The above eqs will be considered as generalized Riemann-Hilbert
(RH) pbs. Need analyticity—next



Efcns—2 x 2 Systems: Diff Eq

The fens M(x, k), N(x, k) satisfy the following DE for x(x, k):
Oxx(x, k) = ik (3 +1) x(x, k) + (Qx) (x; k)
while the fcns M(x, k), N(x, k) satisfy the DE for x(x, k):

O (x, k) = ik (3= 1) T(x, k) + (QF) (x, k)

=(5 1) e (79)

and | is the 2 x 2 identity matrix. Via Green's fcns methods we
may convert DE to an Integral eq

where



Efcns—2 x 2 Systems: Integral Eq

Efcns can be written in terms of Volterra integral eq:

M(x, k) = ( . > 4 / :o G (x — X, )Q()M(X, k)dx’

N(x, k) — ( 0 ) +/_:O G (x — X, K)QX)N(X, k)dx!

1
M(x, k) = ( (1) > +/:>0 G_(x — X, K)Q(XYM(X', k)dx'

N(x, k) = ( (1) ) +/_:O G (x — ¥, K)Q(X)N(, k)d!

with (6(x) Heaviside fcn):

G (x, k) = +6(+x) < (1) egkx ) LG, k) = TO(x) < .

e—2ikx 0

1

)



Analyticity of Efcns

Theorem

If g,r € LY(R), then {M(x, k), N(x, k), a(k)} are analytic
functions of k for Imk > 0 and continuous for Imk > 0, while
{M(x, k), N(x, k),a(k)} are analytic functions of k for Imk < 0
and continuous for Imk < 0. Moreover, the solutions of the
corresponding integral equations are unique.

Proof: Convergence of Neumann series



Large k Behavior

From the integral equations can compute the asymptotic expn as
k — oo (in the proper half-plane) for the efcns; find

M(x, k) = ( = i Joog ) >+0(1/k2)

~ 2k r(X)

Vix. 14 5k f+°° (x")r(x")dx’ 2
N(x, k) ( 2ik () )+O(1/k )
nek) = (4 z'k"(x),)r(x,)dx,)+O(1/k2>
v 7 a(x)

M(x, k) ( 1+ z,kfqu(x V(') ) + 0(1/k?)

and a(k)=1+0(%)and 3(k)=1+ O(})as k —



Required Scattering Data

Scattering data that will be needed—in general position: p(k), p(k)
and information about zero's (evalues) of a(k), a(k)

For general q(x), r(x) proper evalues correspond to L? bound
states; they are assumed simple and not on the real k axis

At: a(kj) =0,kj =&+ inj,m; >0, j=1,2,...,J with
¢j(x) = bjphj(x) where ¢;j(x) = ¢(x, kj) etc

This implies B B
Similarly at: a(k;) =0, k; = 5 i, 7; >0, j= ., J with

j(x) = bjhj(x)



Required Scattering Data—con't

In terms of M, N, M, N proper evalues correspond to
Mi(x) = b Ni(x),  i(x) = By e 2Ry (x)
For the inverse pb require: C; = b;/a'(k;j), C; = b; /3 (k;)

Scattering data that will be needed:
S(k) = {p(k), {kis G}.j =1, ... J; p(k),{ki, G}j=1,.... I}



Symmetry Reductions

When r(x) = Fq*(x):

- N (x, k*) \" _ M) (x, k*) \"
Ve = (i) ) = ()

a(k)=a"(k"),  b(k)==b"(k"),

Thus the zeros of a(k) and a(k) are paired, equal in number:
J=1J

K=k, Dbi=-b j=1..,J

Only have evalues when r(x) = —g*(x): no evalues when
r(x) = +4*(x)



Symmetry Reductions—con't
For r(x) = Fq(x), q(x) € R:

_ N®)(x, —k _ M@ (x, —k
et = ol ) MR = () )

a(k) =a(=k),  b(k) =Fb(—k),

Thus the zeros of a(k) and a(k) are paired, equal in number:
J=1J

Only have evalues when r(x) = —q(x) € R: no evalues when

r(x) = +4(x)

Since r(x) = —q(x) € R satisfies r(x) = —q(x)* both symmetry
conditions hold; so when k; is an evalue so is —k;'; i.e. either the
evalues come in pairs: {k;, —kj‘} or they are pure Img



Symmetry Reductions—con't

For r(x) = F¢*(—x)

EMO(—x, —k) T\ - EM®(—x, —k*) \*
N(X,k):< M(l)((—X,—k*)) > ,N(X,k):( M(l)((—X,—k*))>

and the scattering data satisfies
a(k) = a*(—k*), a(k) =3*(—k*), b(k) = Fb*(—k*)

It follows that if kj = &; + i7; is a zero of a(k) in UHP-k then
—ki = =&+ inj is also a zero of a(k) in UHP-k etc

Also need data from ‘right’ which relate to data from ‘left” — will
not go into detail here



Inverse Problem

Recall: Soln process via IST:

U(X, 0) Direct Scattering L S(k, 0)

lt: time evolution: M

Inverse Scattering
%

u(x, t) S(k,t)

Operating with projection operators on the completeness relations
after subtracting behavior at infinity and pole contributions

M(x, k) = Hoc
P N(x, k) + p(k)e*™ N(x, k)
V(x, k) B _ i+
5(/() - N(X7 k)+p(k)e 21k N(Xa k)

yields integral eqgs



Inverse Problem—Integral Eq

Genl g(x), r(x):

) 1\ et #29 p(C)e2N(x, €)dC
Wx k) = < 0 > *2 g ORI =

J = —2lkX too 5 —2iCx
() — p(§)e " *N(x, ¢)d¢
N(x, k) < > Z} (x) /_OO 2mi(¢ — (k +10))

where N;(x) = N(x, k;), N;(x) = N(x, k;) We close the system by
evaluating above eq at k, and ky; p=1,2,...,J resp.

By considering large k behavior from above eq and from direct
Volterra integral eq we find reconstruction formulae for r(x), g(x)



Inverse Problem—Reconstruction Formulae

J. +00
() = =213 GG + - [ p(Qe N x, )ec

J
g ) oo

a0x) = 20 S e 2B GRM (x) 4+ - / (O)e N (x, ¢)d¢
j=1



Inverse Problem—With Symmetry

In each case can simplify prior integral eq with additional
symmetry;
When r(x) = Fg¢*(x) integral eq reduces to

(0N K Ge Rl 1 5(0)e 2R x, ¢)dg
N(X’k)‘( )‘Z U CEEY B i)

with symmetry:
N (x, k) - N (x, k*) \~
N(Xv k) - < N(2)(X, k) > ) N(Xa k) - ( :FN(I)(X, k*) >
plk) = Fp(k)" ke€R, /;j:kjik’ (_:J'::ch*

Note: system is closed by evaluating above integral eq at
k=ky, p=1,...,J



Inverse Problem—With Symmetry—con't

Recall:

J = 2ikrx = —2iCx |\
(o0 Ge 1 [ p(Q)e N (x, ) d
N(x, k) = < 1 >+J¥1 Jk—l_g Nj(X)_%/_oo ¢ — (k+i0)

When r(x) = Fq(x) € R symmetry is:
N (x, k - N®(x, —k
)= (g ) 10 = (e )



Inverse Problem—With Symmetry—con't

The case r(x) = Fqg*(—x) is somewhat more complex since we
need efcns and completeness at both +oo; in this case:

MO (—x, —k) "\ - O (—x, —k*) \*
N(X,k)_< M(l)((—X,—k*)) > 7N(X,k)_< M(l)((—X,—k*)))



Inverse Scattering—with Symmetry—con't

(0, N Gl ke R ple)e 2O (x, £)de
N(X,k)—< )+Z T _/_Oo 27i(§ — (k +i0))

Since N(x, k) is related to M"(—x, k*) also use

J . .
— (0 By M(x, kg)e_2’k‘~’x > R(f)e_2’5X/\/I(X,§)d§
M“’“‘(l)*; I =)

And since M(x, k) is related to N*(—x, —k*) this yields an integral
eq for N(x, k) (also have suitable symmetry for scatt data); Trace
formula shows that only b(k) and discrete data needed for
inversion (add’l symmetries: R(k) = xp*(—k*), By = ¥C/,...)



IST: Next Time Dependence

Soln process via IST:

Direct Scattering
—>

u(x)O) L: S(k,O)

lt: time evolution: M

Inverse Scattering
u(x, t) s————

S(k,t)



IST: 2 x 2 Time Dependence

The associated M operator determines the evolution of the efcns
Taking into account BCs ¢(x, k, t) satisfies

8t¢=<A_CA°° —Aono >¢ (E)

where A, = lim A(x, k)

[x]—00

Using completeness and evaluating x — oo:
_ —ikx
00k £) = bk )00 )+ alh, 0k ) ~ (e )

Then as x — oo, (E) yields:

atefikx _ 0
bteikx - _2Aoo beikx



IST: 2 x 2 Time Dependence—con't

Doing the same for ¢(x, k, t) find

8[-3 = O, 81-5 =
O¢b = —2Ab, O¢b = 2Ab

Thus then zero's of a(k), a(k) (evalues) k;, k; are const in time
and for p(k, t) = b(k,t)/a(k,t); p= b(k,t)/a(k,t):

p(k, t) = p(k, O)e_2Aoo(k)t’ p(k, t) = p(k, O)eZAoo(k)t

Similarly find:



Solitons—Reflectionless Potls

Can obtain pure soliton solutions; for genl g(x, t), r(x, t) systems
IST with: p =0,p =0 i.e. reflectionless potls; inverse prob
reduces to a linear algebraic system:

J ik
= 1 Ci(t)e? > Nj(x, t)
N t) = J i J\™
(1) <O)+ - ki — kj

J 7 —2ikmx [\ (x
No(x, t) = ( 0 ) +> Cm(t)e™ ™" Nin( 7t)’

with reconstruction:

r(x,t) = —2i > e2%* G()NP) (x, 1)



One Soliton Solns —With Symmetry

Using the time-dependence of Ci(t) and symmetry:

r(x,t) = —q(x, t)*
General one soliton soln:

q(x) = 2ne~2ix+2ImAxe (k)t=o sech [2 (n(x — xg) + ReAso(k1)t)]

where |
ki =&+ i, Gi(0) = 277e277x0+'(¢0+7r/2)



One Soliton Solns With Symmetry—con't
Special one soliton cases:
i) NLS: r(x,t) = —q*(x,t), k1 = & + in, Ao (k1) = 2ik?
qx, t) = 2ne 2 H4(E=n*)t=ivo sech [2) (x — &€t — x0)]

i) mKdV:
r(x,t) = —q(x,t) ER, ki = in, Asxl(ki) = —4iki = —dn?

q(x, t) = 2nsech [2n (x — 4nt — x0)]

i) SG: r(x,t) = —q(x,t) € R, k1 =in, Ax(ki)= ﬁ = %

1
q(x,t) = —% = —2nsech {277 (x—i- %t — x0>] ,

or in terms of u, a simple ‘kink’:

1
u(x,t) = 4 tan texp [217 (X + %t - x0>]



One Soliton With Symmetry—con't

Nonlocal NLS: r(x,t) = —q*(—x,t): ki = in, ky = —imy

Ci(t) = Ci(0)et™Mt = |c|eiletm/Retaimt || =y 475,

— — 72 (S i=2
Ci(t) = Ci(0)e " = [c|e’ P/t [g| =y 47y
Find a two parameter ‘breathing’ one soliton solution

2(771 + ﬁl)eiae—4iﬁ§te—2ﬁ1x

o 1 _|_ ei(§0+¢)e4i(n%_ﬁ%)te_2("71+ﬁ1)x

q(x, t) =

Note |c| = |€| =m1 +7; eigenvalues and ‘norming’ const related!

1-soliton reduces to NLS 1-soliton when 11 =7; and ¢+ =0



One Soliton With Symmetry—con't

Recall: two parameter ‘breathing’ one soliton solution

2(m + ﬁl)eiae—Mﬁ%te—mlx

1 14 eilotR) 4 (M —T3)t g —2(mm+TTr)x

q(Xv t) =

Note that there are singularities at x = 0 with:
1+ e(PtP) i Tt — 0 or at
@n+ D) — (¢ +9)

t=t,= — , neZ
! 4(n3 —13)

Singularity disappears when 71 =7; and ¢ + @ # (2n+ )7, n=Z




Conserved quantities

a(k, t) is conserved in time; it can be related to the conserved
quantities. This follows from the relation

a(k,t) = lim ¢M(x, k; t)e™

X—>—+00

and the large k asymptotic expn for the efcn: ¢ = (d)(l), ¢(2)) 4
The first few conserved quantities are:

G = —/q(x)r(x)dx, G = —/q(x)rx(x)dx
G = [ () + (e ()?) o

Similar ideas lead to conservation laws



Conserved quantities—con’t

For example, with the reductions r = Fg* these constants of the
motion can be written as

G = j:/|q(x)2dx, G :j:/q(x)qj:(x)dx
G = [ (FladP + lata*) ox



Inverse Pb—Triangular Representations: Towards GLM

For general g(x), r(x):

Assuming triangular representations for N, N

+o0 .
N(x, k) = ( (1) ) +/ K(x,s)e*)ds, s >x, Tmk >0

—_— +m - .
N(x, k) = < (1) ) —i—/ K(x,s)e " (=x)ds, s> x, Imk <0

substituting into prior integral eq and taking FTs, GLM eq follow



Inverse Problem—-via GLM Eg—con’t

For general g(x), r(x) find

R(x,y)+ < (1’ > F(x+y) + /;OO K(x,5)F(s + y)ds = 0

K(x,y)+(é)ﬁ(x+y)+/x+oof<( s)F(s+y)ds =0

where



GLM: Reconstruction — Symmetry

Reconstruction for general g(x), r(x)
q(X) = _2K(1)(X7X)7 r(X) = _2R(2)(X7X)

Symmetry reduces the GLM eq; with r(x) = Fq(x)* find

_ i @(x,y) )
F(x) =FF"(x), K(xy)= < ¢KK(1§(>’<7yy)) )

In this case the GLM eq reduces to
+oo +o0o
KD (x,y) = F*(x+y)F / ds / ds' KW (x, s')F(s+5') F* (y+s)

for y > x; When r(x) = Fq(x) € R then F(x) and
K(x,y) aree R



Conclusion and Remarks

Discussed: in these lectures:
Compatible linear systems—Lax Pairs—2 x 2 systems
IST method—nonlinear Fourier transform
IST associated with KdV
IST for general g, r: 2 x 2 systems
g, r systems with symmetry:
o r(x,t) = Fq*(x,t): NLS
e r(x,t) = Fq(x,t) € R; mKdV, SG
e r(x,t) = Fq*(—x, t): nonlocal NLS

Not discussed— long time asymptotic analysis where solitons
and similarity solns/Painleve fcns (e.g. for KdV/mKdV) play
important roles



Conclusion and Remarks

e May also carry out IST for many other systems, some
physically interesting

Higher order and more complex 1 + 1d PDE evolution systems:
N Wave eq; Boussinesq eq

Nonlocal eq such as Benjamin-Ono (BO) and Intermediate
Long wave eq

Discrete problems: e.g. Toda lattice, discrete ladder systems,
integrable discrete NLS

2 + 1d systems such as Kadomtsev-Petviashvili (KP),
Davey-Stewartson, N Wave systems

In 2 4 1 there are some important extensions/new ideas
needed for IST: notably DBAR problems: e.g. KPII
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