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1. Introduction
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Rogue waves are large and spontaneous waves in noalr systems.
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Rogue waves can be damaging.

Thus understanding of rogue waves and conditions fdaheir
appearance is necessatry.



1. Introduction

A strong point of view: rogue waves are due to madation instability.

Mathematically the simplest model for describing mdulation instability
In optics and water waves is the NLS equation:

iy = Uy + 2|ulu.

The simplest rogue wave in this equation was givésy Peregrine (1983).
Higher-order rogue waves in this NLS equation werelerived by

 Akhmedievet al. (2009 --)
 Matveev et al (2010 --)
 Guo, Ling and Liu (2012)
« Ohta & Yang (2012)

« Heetal (2013)



1. Introduction

Notes:

* The Peregrine solution could be obtained by reduatn of algebraic
solutions for Davey-Stewartson equations (Satsuma &blowitz 1979)

 These rogue waves are related to homoclinic solutie under a certain
limit.



1. Introduction

Recently, rogue waves in various other integrableystems have also
been derived, including

Hirota equation (Akhmediev et al. 2010)

derivative NLS equation (He et al. 2011, Guo et a2012)
Davey-Stewartson equations (Ohta & Yang, 2012, 281
Manakov equations (Degasperis et al. 2012)
Three-wave interaction model (Degasperis et al. 261
Maxwell-Bloch equations (He et al. 2013)

Yajima-Oikawa system (Feng, Maruno, 2015)

Main techniques used:

e Darboux transformation
* Bilinear methods
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1. Introduction

Experiments:

Water tanks

Optical fibers
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1. Introduction

In thistalk, we study rogue waves in the discrete Ablowitz-Ladik
equations.

Ablowitz-Ladik equations are the first space-discrete integrable
equations discovered by Ablowitz and Ladik in 1976.

Special first-order and second-order rogue waves in the focusing
Ablowitz-Ladik equations were reported by Akhmediev and
collaboratorsin 2010.

In thistalk, we derive general rogue-wave solutions in both the
focusing and defocusing AL eguations (Ohta and Yang 2014).



2. Modulation instability in Ablowitz-Ladik equations

Ablowitz-Ladik equations have two types, focusing and defocus-
ing (Ablowitz and Ladik 1976):

Focusing:
.d 2
E{Euﬂ = (]- + |u-r1| )(uﬂ,—l-l. + uﬂ,—l)} (]')
Defocusing:
. d 2 i
EEHH — (]- - |u-n,| )(un—l-l + un—l)- (2)

First we study modulation instability in the AL equations.

Why? Because modulation instability is precursor of rogue waves.



2. Modulation instability in Ablowitz-Ladik equations

Modulation instability in the focusing AL equation
The constant-background solution is

i, [:ﬁ:] _ TE—E‘EIZI-FTH]H’-I

To study its modulation instability, we perturb it by normal
modes

U (t) = e~ 2071 (T 4 fet+isn _|_£—;‘.E.-:".t—i.l-'fft) | 3)

where A and 3 are the growth rate and wavenumber of the per-
turbation, and f, g < 1.

The equation for the growth rate A is

N =4(r* +1)(1 —cosf) [(r* = 1) + (r* +1)cos 3] .
This formula shows that, all constant backgrounds in the focusing
AL equation are modulationally unstable.

Thus rogue waves are expected in the focusing AL equation at all
background levels.
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2. Modulation instability in Ablowitz-Ladik equations

Modulation instability in the defocusing AL equation

Constant-background solution

wn(t) = re 2070t (4)

Perturbing this solution by normal modes, we obtain the following
equation for the growth rate A:

N =4(r* =1)(L —cosB) [(r* + 1)+ (r* = 1) cosB] . (5)

This formula shows rogue waves with background amplitudes
higher than 1 can exist in the defocusing AL equation.

This is surprising! Defocusing nonlinearity supports rogue waves!

A similar phenomenon was reported recently in the defocusing
Manakov system by Degasperis et al. (2014).

However, backgrounds lower than 1 are modulationally stable in
the defocusing AL, thus no rogue waves can be expected.
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3. Formulae for General Rogue Waves in AL Equations

General rogue waves in AL equations are given below:

Theorem 1 General N-th order rogue waves in the Ablowitz-
Ladik equations (6)-(7) are given by

P Yn i(fn—wt)
un(t) = —— € : 8

where p and 6 are free real constants, w = 2cos 8/(1 — p?),

o= Tn,(U')z- Gn = Tri(l)/(l + p)ENT

?
p=g=1+p

To(k) = det (n}’g?}—l._‘zj—l(k))

1<, j<N

m\™ (k) = A; Bm™ (k),

iJ

1 ]' —p* - ¢ i =— get? —pe—i
-_rn{-rl]'(k) — (pq).rz ( p Q) E.(ﬂq 1_—ﬂ-_r)(;,ﬂ pe {I)t

pg —1+ p? 1—1/p

-
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3. Formulae for General Rogue Waves in AL Equations

A=Y —l(p = 1),

—~ (2 —v)!

—— (g = 19",

a, are complex constants, overbar™ represents complex conjuga-
tion, and

{1{}:1? as = a4 = "':aevenz[}- (g)

When |p| < 1, these rogue waves satisfy the focusing AL equation
(6); and when |p| > 1, they satisfy the defocusing AL equation

(7).

The above expression (8) for rogue waves involves differential op-
erators A; and B;. A more explicit and purely algebraic expres-
sion for these rogue waves (without the use of such differential
operators) is also available, but details are omitted.

13



3. Formulae for General Rogue Waves in AL Equations

Regarding boundary conditions of these rogue waves at large
times, we have the following theorem.

Theorem 2 Ast — +o0, solutions u,(t) in Theorems 1 and 2
approach a constant background,

w, (t) — p pi (n—wt) (10)

N
(—1) =

uniformly for all n as long as cos @ # 0.

This theorem confirms that solutions u,(f) in Theorems 1 and 2
are indeed rogue waves, i.e., they rise from a constant background
and then retreat back to this same background.

14



3. Formulae for General Rogue Waves in AL Equations

Regarding regularity (boundedness) of these rogue waves, we have
the following theorem.

Theorem 3 General rogue-wave solutions to the focusing AL
equation (6) (with |p| < 1) in Theorems 1 and 2 are non-singular
for all times.

Note: this theorem only says that rogue waves for the focusing
AL equation are bounded.

It does not say rogue waves for the defocusing equation are

bounded.

In fact, we will demonstrate that rogue waves for the defocusing
AL equation can blow up to infinity in finite time.



3. Formulae for General Rogue Waves in AL Equations

Remark 1 In these rogue-wave solutions,
e p controls the background amplitude, and

e (is the phase gradient of the solution across the lattice, which
is related to the moving velocity of the rogue wave.

This free @ parameter was missed in Akhmediev et al’s work.

Remark 2 Non-reducible free parameters in these N-th order
rogue waves are p, f, Re(a;) and as,as, .. .aan-1, totaling 2N + 1
real parameters.

Remark 3 The 2N+1 irreducible free parameters in these rogue
waves of the AL equations is three more than the corresponding
number 2N — 2 in the NLS equation.

The reason is that the NLS equation has three invariances
which are lacking in the AL equations: spatial-translation invari-
ance, Galilean-transformation invariance, and scaling invariance.
These invariances reduce NLS-rogue free parameters by 3.
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4. Dynamics of General Rogue Waves in AL Equations

Now we examine dynamics of rogue waves in AL equations.

Fundamental rogue waves

Fundamental rogue waves are obtained by setting N = 1. After
shifts of £, n, and utilizing phase and time-shift invariances of the
AL equations, these fundamental rogue waves can be rewritten
as

2iptwt — 1

P i(n—wt) |-
Uy (1) = ———=¢ 1+ _
o V1—p? 02 (n+wttan® — ng)”* + prw?t? + H1-p?)

where p, # and ng are free real parameters.

The background amplitude is

p]

VT
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4. Dynamics of General Rogue Waves in AL Equations

Focusing case
In this case, |p| < 1,0 <r < oo, and the wave is always bounded.
Non-traveling rogue waves (# = 0)

2iptwot — 1

! gm0t 1] 4

)
Uy (1) = _
n(f) V1-—p? P2 (n—mng)” + plwdt? + L1 - p?)

where wy = 2/(1 — p?).
(1) on-site rogue waves: ng = 0
Peak amplitude: u,,, = r(3 + 4r?),

which is at least three times the background amplitude r, and
can be much higher when the background is high.

(2) off-site rogue waves: ny = 1/2

Peak amplitude: u,,.. = 3r, like in the NLS case.

18



4. Dynamics of General Rogue Waves in AL Equations

Non-traveling fundamental rogue waves in focusing AL

Off-site

Broad wave Narrow wave
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4. Dynamics of General Rogue Waves in AL Equations

Focusing case

Traveling rogue waves: 6 # ()

20



4. Dynamics of General Rogue Waves in AL Equations

Defocusing case (|p| > 1)
In this case, rogue waves may explode to infinity in finite time.

When # = 0, the blowup condition is

1
ngl < —
|f{}| 2'}"?

Ty = 1/2 Ty = 0




4. Dynamics of General Rogue Waves in AL Equations

Second-order rogue waves: focusing

The highest possible peak amplitude is
|t mex = (5 + 20r% + 16r%).
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4. Dynamics of General Rogue Waves in AL Equations

Second-order rogue waves: defocusing

b E
N
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4. Dynamics of General Rogue Waves in AL Equations

Third-order rogue waves: focusing

24



4. Dynamics of General Rogue Waves in AL Equations

Our message:

Rogue waves in focusing AL resemble those in the focusing NLS,
but with nontrivial differences such as

e rogue waves in AL can be onsite or offsite, which affect their
attainable peak amplitude;

e maximum attainable peak amplitudes of AL rogue waves can
be much higher than those in NLS

Rogue waves in defocusing A L have no counterparts in defocusing
NLS. These rogue waves may be bounded, but may also blow up
to infinity in finite time.
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5. Derivation of General Rogue Waves in AL Equations

Now we derive these general rogue-wave solutions in AL equations
by the bilinear method.

First, under the variable transformation

9n ?{Hn wt)

uﬂ ;)
\/ ]_ - ffl
the AL equations
d )
E{Euﬂ — (]- + Jlunl )(uﬂ,+l + u"ﬂ,—l)

become the following bilinear form

[E(]- - ﬁg)Dt + ¢+ E]gn, . fn, = CGn-1Jn+1 + Eg-n,—l-lf-r—l;-
fn,—l-l n—1 — (]- - ﬁg)fmfu — pggngn;

where ¢ = e7", o0 = sgn(1 — p?), the overbar represents complex

conjugation, Euild D, is the Hirota derivative. 26



5. Derivation of General Rogue Waves in AL Equations

[E(l - pg)Dt +c+ E}gn 'f'n, — ﬂgn—lfu—l—l + Egn—l-lfn—lz-
fn,—l-l n—1— (1 - Pz)fuﬁ; — pggngn;

Our strategy:

(1) Construct 7(k,!l) solutions for general bilinear equations

(D, + V7(k = 1,0 -7, (k 1) = 11 (kB — 1, D11 (K, 1),

(Dy = )1 (b, 1+ 1) -7 (K, 1) = =7 (K L4+ 1)1 (K, D),

Tnit(k = 1,070 1 (k, 04+ 1) — (1 = p*)7(k — 1, D)7 (k, L+ 1)
= p*m(k — 1,1+ D)7k, D).

(2) Further require these 7(k,[) to satisfy the reduction relation

Tu(k+ 1,14+ 1) o< 7, (k, ).

Then by properly defining x and y variables, these 7(k, () func-
tions would satisfy the bilinear AL equation.

27



5. Derivation of General Rogue Waves in AL Equations

To achieve the first step, we present the following lemma.

Lemma 1 Let mg;"}? E.,S‘,Eﬂ} and ;b?"} satisfy the following dispersion

relations,

Bt (k1) = o™ (e, D™ Y (k, 1),

Bymy (k1) = " (kD (k1)

m{ (k1) = (1= p2)ml™ (k1) + " (k, Dol (k. 1),

mi? (k+ 1,1 = (L= g )ml? (k1) — 0" Y (k + 1,00 (k, 1),
i (k0 +1) = (L= p)mi (k1) — o™ (k, D" Y (k, 1+ 1),
Dupt (k1) = @Y (K, 1),

i (ko) = ~(1= )" (kD). (11)
i (k= 1,0) = " (k1) = 0"V (K, D),

el (k1) = (1= p2)oi™ (k1) — 0" (e, 1),

(@ + 10 (e, 1) = =0\ Pk +1,1),

(8, — D™ (k1) ="V (k1 - 1),

-._E-”}{k+l 1) =(1— ")\ (k) — T (1),

¢k, - 1) = .‘”}{k 1) =" k1),

28



5. Derivation of General Rogue Waves in AL Equations

Then the determinant

(k) = @t(m?&jﬂ

1<i,j<N
satisfies the bilinear equations

(D, + D7k =11 -7 (kD) = 10 (k= 1, D721 (K, ),

(Dy = )71 (b, I+ 1) -1 (B, ) = =7 (B L4+ 1) 7 (K 1),

Tap1(k — 1, D7 1 (k1 4+1) — (1 = p*)7(k — 1, D)7, (K, 1 + 1)
= p*u(k — 1,1+ D)7(k, D).

This lemma can be proved straightforwardly by using the Jacobi
formula of determinants.

Comment: this lemma is very useful for constructing various so-
lutions since the matrix elements can be any functions satisfying
the dispersion relations.

For rogue waves, we choose the following polynomial solutions for
the matrix elements mg?}(k? l).

29



5. Derivation of General Rogue Waves in AL Equations

Lemma 2 We define matrix elements m?;} by

m™ (k1) = A;B;m!™ (k,1),

1 1= =g\ [1—-p2—p
mm (k, g) _ _ - (I.ﬂ?)n ;—q f—? Fr‘§+ﬂ5
pg — 1+ p? 1—-1/p 1—-1/g
1 — p? 1 — p?
§ =pr— j_}‘{ y, 1=-—L"x+qy,
A; and B; are differential operators
Ly,

(g = 1)9 ™",

A=Y (=10 Bi=) -
— (1 — v)! P g e (j— pu)!
and a,, b, are constants. Then for any sequences of indices Iy,
Iy, -+, Iy and Jy, Ja, - -+, Jy, the determinant,
(k. 1) = det (m ) (g E)
T(?) L<iGeN II( )
. g . 30
satisfies the bilinear equations of Lemma 1.



5. Derivation of General Rogue Waves in AL Equations

Proof It is easy to see that the above m™(k,l) and

Pk, 1) = p"(1—1/p) (1 - p* = p)'e,

(kD) = g"(1 - p* — )" (1 = 1/g)"'e"
satisfy the following dispersion relations,

anm'iﬂi'(k,x) o (e, DY (k1
Aym™ (k1) = ,g“ Y (ke 1™ (k, 1),
nm (k1) = (1 — p*)m™ (k, )+;}”:'(kfj ) (k, 1),
m”:'(k+l,f) (1= pH '™ (k1) — g lj(k+li’) (k1)
m”:'(kf+1) (1 — p* )™ (k1) - ”}(kf) (=D (k1 4-1),
Dp ™ (k, 1) = "V (K, 1),
5‘J~,ﬂ”3'(k [) = —(1—p*)pl" Dk, f’)

AW (k= 1,1) = g™ (k1) — "D
»9(“3'(%55+1)=(1—ﬂ) ") (k1) — ”*”(M)
(Dp + 1)1_-:'1':”:'(:39,{) = —qpln- Dk +1,1),

@y — )™ (k1) = """“3'(1EC = 1),

W (ke +1,1) = (1 — p2)p™ (k1) — " (k1)
W (k1= 1) =™ (k1) — ?,.Jﬂfli'(k,g)_

31



5. Derivation of General Rogue Waves in AL Equations

Thus
my (k1) = A4 B;m™ (k,1),

o (k1) = Aip™ (K, 1),

o (k, 1) = Bjp™ (k,1)

satisfy the dispersion relations of Lemma 1.

Consequently the determinant 7,(k, [) satisfies the bilinear equa-
tions of Lemma 1.

32



5. Derivation of General Rogue Waves in AL Equations

We now consider the second step: reduction relation.

For this purpose, we have the following lemma.

Lemma 3 The determinant

?
p=g=1+p

To(k,l) = det (mg?ll,zj—l(k;f))

1<i, j<N

where mgf}(k?af) is defined in Lemma 2, satisfies the reduction
condition

Tk + 1,14+ 1) = (1+ p)* 7, (k, ).

Due to time constraint, this proof is omitted.
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5. Derivation of General Rogue Waves in AL Equations

Proof of Theorem 1 (on AL rogue waves)

Since the 7 function in Lemma 3 satisfies both the bilinear equa-
tions of Lemma 1 and the reduction condition in Lemma 2, it
satisfies all the following bilinear equations,

(D.:r: + len( ) Tn (k + 1'-' 'F) = Tn+'l(k'-' '{)Tn—'l (k + 1'-'”-.-
(D.:r: + I)Tn(k [ + 1) Tn(k'-' 'F) = Tn+'l(k'-' [ + 1)Tn—1 (k”
(Dy = 1) (bl + 1) - 1o (k1) = =Ty (B L+ 1) T (K1),
(DH_ leTL( ) Tn(k+l*ﬂl) =_Tn—1(k'.-”Tn+1(k+1?D-:
. 9 }':"2 . .
Tort (b Dy (B 1) — (1 — p® ) (B, D (KB 1) = Wm(k + L) (kD +1).
We now substitute
vt vt
T = = —
1 _p ¥ y 1 _ pﬂ?

where ¢ and d are complex constants.

Then the time derivative becomes

i(1 —p*)0 = —cd, + d,,
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5. Derivation of General Rogue Waves in AL Equations

thus we obtain

i(1— p*)Dy +c +dm (k +1,1) - 7 (k1)

=cTp1 (kb + 1, D (kL) +drp (B + L D m— oy (K1),

[—i(1— p*)D; +c+dm (k1 +1) 1, (k1)

= Tpr (ko L+ D)y (kL) +drp—y (KD + Dy (K1),
2

Toat (b DTy (kD) — (1 — p* ) (K, D (K1) = “_:rwrn(k + L) (k1 +1).

The determinant solution in Lemma 3 now becomes

i
p=q=1+p

(k) = det (_qgi_lsglj_lm(“}(k? s))

1<i, j<N

1 1= —g\" 1 =0 —=p\" 1 _t Vu
m™ (k, 1) = _ _}(m)n( 7 *3!) ( s iﬂ) S ) tad-pent
pg — 1+ p? 1—-1/p 1—-1/g

By taking b, = a, and d = ¢, the conjugacy condition

T (L k) = 1.(k, 1) .

is then satisfied.



5. Derivation of General Rogue Waves in AL Equations

Finally we define

L — TH(U? U)? gﬂ — TH(]'?U)/(]' + p)glﬁ;?

then f, is real,

TIL(U? 1)/(1 + ,_:})EN — gﬂ,?
and the above bilinear equations yield
[3(1 - ﬁE)Dt +c+ E]Q-n, 'f-n, — E:gﬂ—lfm—l—l + Egﬂ—l—lfu—l:-
fu—l—l n—1 — (]- - pz)fufu — pﬂgngn-

Setting ¢ = e %, this is then the bilinear equation of the AL
equation.

Thus the above bilinear solutions f,.g, give algebraic solutions
of the AL equations, which turn out to be rogue waves.
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6. Comparison with Rogue waves in DS equations

Rogue waves in AL equations remind us of rogue wagen the
Davey-Stewartson (DS) equations.

DS equations were derived by Benney & Roskes (1969)dDavey
& Stewartson (1974), and are also called Benney-Ross-Davey-
Stewartson equations.

DS equations are divided into two types, DSI and OB

Similarities with AL:

Rogue waves in DSI are always regular (no blowup);
Rogue waves in DSII may be singular (blowup can oac)



Summary

We have derived rogue waves in the AL equations. We have
shown that

e Rogue waves in the focusing AL equation can have arbitrary
levels of backgrounds, and they are always regular;

e Rogue waves in the defocusing AL equation also exist. These
waves exist only when the background is above a certain
threshold, and they may explode to infinity in finite time.
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