Singular Limits for Integrable Equations

Peter D. Miller

Department of Mathematics University of Michigan

October 18, 2015 International Workshop on Integrable Systems CASTS, National Taiwan University, Taipei

Prototype: free Schrödinger equation.

Consider the free-particle (linear) Schrödinger equation

$$i\epsilon \frac{\partial \psi}{\partial t} + \frac{1}{2}\epsilon^2 \frac{\partial^2 \psi}{\partial x^2} = 0, \quad x \in \mathbb{R}, \quad t > 0, \quad \epsilon > 0,$$

with initial data

$$\psi(x,0) = \psi_0(x) = \sqrt{\rho_0(x)} e^{iS(x)/\epsilon}, \quad S(x) := \int_0^x u_0(y) \, dy.$$

Overall goal: describe how ψ depends on

- the independent variables x and t
- the parameter ϵ (Planck's constant)
- the initial data ψ₀ (equivalently, the amplitude ρ₀ > 0 and phase gradient u₀).

Prototype: free Schrödinger equation.

The initial-value problem can be solved by the Fourier/Inverse-Fourier transform pair.

• Direct transform:
$$\hat{\psi}_0(\lambda) := \frac{1}{2\pi} \int_{\mathbb{R}} \psi_0(x) e^{2i\lambda x/\epsilon} dx.$$

2 Time evolution:
$$\hat{\psi}(\lambda, t) = e^{-2i\lambda^2 t/\epsilon} \hat{\psi}_0(\lambda)$$
.

3 Inverse transform:
$$\psi(x,t) = \frac{2}{\epsilon} \int_{\mathbb{R}} \hat{\psi}(\lambda,t) e^{-2i\lambda x/\epsilon} d\lambda.$$

Combining steps 2 and 3 gives an integral representation of $\psi(x, t)$ in terms of the transform $\hat{\psi}_0(\lambda)$:

$$\psi(x,t) = \frac{2}{\epsilon} \int_{\mathbb{R}} \hat{\psi}_0(\lambda) e^{-2i(\lambda x + \lambda^2 t)/\epsilon} d\lambda.$$

Also using step 1 gives an iterated double integral representation of $\psi(x, t)$ in terms of $\psi_0(x)$ directly:

$$\psi(x,t) = \frac{1}{\pi\epsilon} \int_{\mathbb{R}} \int_{\mathbb{R}} \psi_0(y) e^{-2i(\lambda(x-y) + \lambda^2 t)/\epsilon} \, dy \, d\lambda.$$

Prototype: free Schrödinger equation.

For some special $\psi_0(x)$ we might be able to evaluate the integrals exactly, but this is unusual.

But integrals can also be calculated with explicit leading-order terms in various singular limits. Typical example: $t \to \infty$ (long-time limit). It is more interesting (and equally easy to calculate) to let *x* be large too: $x = x_0 + vt$ for fixed *v* (maybe v = 0) and x_0 . Since *x* and *t* only appear in the "outer" iterated integral it is enough to write

$$\psi(x_0 + vt, t) = \frac{2}{\epsilon} \int_{\mathbb{R}} \hat{\psi}_0(\lambda) e^{-2i\lambda x_0/\epsilon} e^{-2it(\lambda v + \lambda^2)/\epsilon} d\lambda.$$

This is an integral built for Kelvin's method of stationary phase. One simple stationary phase point $\lambda = \lambda_c := -v/2 = -(x - x_0)/(2t)$, so

$$\psi(x_0 + vt, t) = e^{-i\pi/4} \sqrt{\frac{2\pi}{\epsilon t}} \hat{\psi}_0(\lambda_c) e^{-2i\lambda_c x_0/\epsilon} e^{2it\lambda_c^2/\epsilon} + \mathcal{O}(t^{-3/2}), \quad t \to \infty.$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Prototype: free Schrödinger equation.

Another singular limit we may consider is $\epsilon \to 0$ (semiclassical limit). Now we must use iterated/double integral, but because Schrödinger's equation has an exponential Green's function it is useful to carefully exchange the order of integration and reduce the problem again to a single integral: for t > 0,

$$\psi(x,t) = \frac{e^{-i\pi/4}}{\sqrt{2\pi\epsilon t}} \int_{\mathbb{R}} e^{iI(y;x,t)/\epsilon} \sqrt{\rho_0(y)} \, dy, \quad I(y;x,t) := S(y) + \frac{(y-x)^2}{2t}$$

Again the method of stationary phase applies, now to the limit $\epsilon \downarrow 0$:

$$\psi(x,t) = \frac{1}{\sqrt{t}} \sum_{n=0}^{2P} \frac{e^{i\pi((-1)^n - 1)/4}}{\sqrt{|I''(y_n; x, t)|}} \sqrt{\rho_0(y_n)} e^{iI(y_n; x, t)/\epsilon} + \mathcal{O}(\epsilon)$$

where $y_n = y_n(x, t)$, and $y_0 < y_1 < \cdots < y_{2P}$ are the stationary phase points, that is, the roots (assumed simple) of I'(y; x, t) = 0.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ��

Prototype: free Schrödinger equation.

The condition that y = y(x, t) is a stationary phase point is

$$I'(y;x,t) = u_0(y) + \frac{y-x}{t} = 0 \quad \Leftrightarrow \quad x = u_0(y)t + y.$$

This is also the equation for intercepts *y* of characteristics through (x, t) for the formal limit of the Madelung system ($\rho := |\psi|^2$ and $u := \epsilon \text{Im}(\psi_x/\psi)$)

$$\rho_t + (\rho u)_x = 0, \quad u_t + u u_x = \frac{\epsilon^2}{2} \left[\frac{\rho_{xx}}{2\rho} - \left(\frac{\rho_x}{2\rho} \right)^2 \right]_x$$

.

Prototype: free Schrödinger equation.

Here are the characteristic lines in the case $u_0(x) = -8 \operatorname{sech}^2(x) \tanh(x)$:

<ロト <四ト <注入 <注下 <注下 <

Prototype: free Schrödinger equation.

Here are the characteristic lines in the case $u_0(x) = -8 \operatorname{sech}^2(x) \tanh(x)$:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ○○○

Integrability: Fourier transform \rightarrow inverse-scattering transform.

Similar precision of analysis is available in principle for nonlinear dispersive wave problems that are integrable:

- In place of the Fourier transform of the initial data, we have instead the *direct scattering transform*. Usually requires the analysis of a linear ODE (or PDE) with a *spectral parameter* to obtain scattering data (one or more functions of the spectral parameter).
- Just as in the linear theory, one has explicit exponential evolution of the scattering data in time *t*.
- In place of the inverse-Fourier transform of the time-evolved transform data, one has the *inverse-scattering transform*. Usually requires the solution of a linear Riemann-Hilbert problem (or ∂ problem).

The Defocusing Nonlinear Schrödinger Equation

Let's illustrate these steps in a bit more detail for the defocusing nonlinear Schrödinger equation

$$i\epsilon\psi_t + rac{\epsilon^2}{2}\psi_{xx} - |\psi|^2\psi = 0, \ \psi(x,0) = \sqrt{
ho_0(x)}e^{iS(x)/\epsilon}, \ S(x) := \int_0^x u_0(y)\,dy.$$

The PDE is the compatibility condition for the two linear problems $(\lambda \in \mathbb{C} \text{ is the spectral parameter})$:

$$\boldsymbol{\epsilon} \frac{\partial \mathbf{w}}{\partial x} = \mathbf{U}\mathbf{w}, \quad \mathbf{U} = \mathbf{U}(x, t, \lambda) := \begin{bmatrix} -i\lambda & \psi \\ \psi^* & i\lambda \end{bmatrix}$$
$$\boldsymbol{\epsilon} \frac{\partial \mathbf{w}}{\partial t} = \mathbf{V}\mathbf{w}, \quad \mathbf{V} = \mathbf{V}(x, t, \lambda) := \begin{bmatrix} -i\lambda^2 - i\frac{1}{2}|\psi|^2 & \lambda\psi + i\frac{1}{2}\boldsymbol{\epsilon}\psi_x \\ \lambda\psi^* - i\frac{1}{2}\boldsymbol{\epsilon}\psi_x^* & i\lambda^2 + i\frac{1}{2}|\psi|^2 \end{bmatrix}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The Defocusing Nonlinear Schrödinger Equation

Introducing real variables (Madelung, 1926)

$$\rho := |\psi|^2 \text{ and } u := \operatorname{Im} \left\{ \frac{\epsilon \psi_x}{\psi} \right\} \implies \rho(x,0) = \rho_0(x) \text{ and } u(x,0) = u_0(x),$$

one can check that the defocusing nonlinear Schrödinger equation for ψ implies the following closed system of equations on ρ and u:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho u) = 0$$
 and $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x}\left(\frac{1}{2}u^2 + \rho\right) = \frac{1}{2}\epsilon^2 \frac{\partial F[\rho]}{\partial x}$

where $F[\rho]$ denotes the expression

$$F[\rho] := \frac{1}{2\rho} \frac{\partial^2 \rho}{\partial x^2} - \left(\frac{1}{2\rho} \frac{\partial \rho}{\partial x}\right)^2$$

Neglecting $\epsilon^2 F_x$ leads to a closed, ϵ -independent hyperbolic system governing expected limits, the *dispersionless defocusing NLS system*.

The Defocusing Nonlinear Schrödinger Equation Direct Scattering Transform: $R_0^{\epsilon} = \mathscr{S}(\psi_0^{\epsilon})$

We need to calculate the Jost solution \mathbf{w} of the Zakharov-Shabat equation

$$\boldsymbol{\epsilon} \frac{d\mathbf{w}}{dx} = \begin{bmatrix} -i\lambda & \sqrt{\rho_0(x)}e^{iS(x)/\boldsymbol{\epsilon}} \\ \sqrt{\rho_0(x)}e^{-iS(x)/\boldsymbol{\epsilon}} & i\lambda \end{bmatrix} \mathbf{w},$$

that is, the solution for $\lambda \in \mathbb{R}$ that is determined (assuming sufficiently rapid decay of ρ_0 for large |x|) by the conditions

$$\mathbf{w}(x) = \begin{bmatrix} e^{-i\lambda x/\epsilon} \\ 0 \end{bmatrix} + R_0^{\epsilon}(\lambda) \begin{bmatrix} 0 \\ e^{i\lambda x/\epsilon} \end{bmatrix} + o(1), \quad x \to +\infty$$

and

$$\mathbf{w}(x) = T_0^{\epsilon}(\lambda) \begin{bmatrix} e^{-i\lambda x/\epsilon} \\ 0 \end{bmatrix} + o(1), \quad x \to -\infty,$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

for some coefficients $R_0^{\epsilon}(\lambda)$ (the *reflection coefficient*) and $T_0^{\epsilon}(\lambda)$ (the *transmission coefficient*).

The Defocusing Nonlinear Schrödinger Equation Inverse Scattering Transform: $\psi = \mathscr{S}^{-1}(e^{2i\lambda^2 t/\epsilon}R_0^{\epsilon})$

For the inverse transform, solve (for each fixed *x* and *t*) the following Riemann-Hilbert problem: seek $\mathbf{M} : \mathbb{C} \setminus \mathbb{R} \to SL(2, \mathbb{C})$ such that:

- Analyticity: M is analytic in each half-plane, and takes boundary values $M_{\pm} : \mathbb{R} \to SL(2, \mathbb{C})$ on the real line from \mathbb{C}_{\pm} .
- Jump Condition: The boundary values are related by

$$\mathbf{M}_{+}(\lambda) = \mathbf{M}_{-}(\lambda) \begin{bmatrix} 1 - |\mathbf{R}_{0}^{\boldsymbol{\epsilon}}(\lambda)|^{2} & -e^{-2i(\lambda x + \lambda^{2}t)/\boldsymbol{\epsilon}} \mathbf{R}_{0}^{\boldsymbol{\epsilon}}(\lambda)^{*} \\ e^{2i(\lambda x + \lambda^{2}t)/\boldsymbol{\epsilon}} \mathbf{R}_{0}^{\boldsymbol{\epsilon}}(\lambda) & 1 \end{bmatrix}, \ \lambda \in \mathbb{R}.$$

• Normalization: As $\lambda \to \infty$, $\mathbf{M}(\lambda) \to \mathbb{I}$.

The solution of the initial-value problem is given by

$$\psi(x,t) = 2i \lim_{\lambda \to \infty} \lambda M_{12}(\lambda).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Semiclassical approximation of R_0^{ϵ} .

1

The first step is to calculate the reflection coefficient for small $\epsilon > 0$. This is a job for classical analysis, specifically the WKB method. Set:

$$\alpha(x) := -\frac{1}{2}u_0(x) - \sqrt{\rho_0(x)}$$
 and $\beta(x) := -\frac{1}{2}u_0(x) + \sqrt{\rho_0(x)}.$

OSC

Solutions of the Zakharov-Shabat problem are

- Rapidly oscillatory if λ < α(x) or λ > β(x)
- Exponentially growing or decaying if α(x) < λ < β(x).

EXP 0.5 $\lambda = \beta(x)$ $\lambda = \alpha(x)$ $\lambda = \alpha(x)$ $\lambda = \alpha(x)$ $\lambda = -\frac{1}{2}u_0(x)$ OSC

<ロ> (四)、(四)、(日)、(日)、

Assume that there are at most two turning points $x_{-}(\lambda) \leq x_{+}(\lambda)$.

Semiclassical approximation of R_0^{ϵ} .

WKB analysis, plus connection analysis based on Airy functions near turning points, yields the following results:

- If $\lambda < \lambda_{-} := \inf_{x \in \mathbb{R}} \alpha(x)$ or $\lambda > \lambda_{+} := \sup_{x \in \mathbb{R}} \beta(x)$, then $R_{0}^{\epsilon}(\lambda) = \mathcal{O}(\epsilon)$.
- If $\lambda \in (\lambda_{-}, \lambda_{+})$, then:

$$R_0^{\epsilon}(\lambda) = e^{-2i\Phi(\lambda)/\epsilon}(1 + \mathcal{O}(\epsilon)) \quad \text{and} \quad |T_0^{\epsilon}(\lambda)|^2 = e^{-2\tau(\lambda)/\epsilon}(1 + \mathcal{O}(\epsilon))$$

where with $\sigma := \operatorname{sgn}(\lambda + \frac{1}{2}u_0(+\infty))$,

$$\begin{aligned} \tau(\lambda) &:= \int_{x_-(\lambda)}^{x_+(\lambda)} \sqrt{\rho_0(y) - (\lambda + \frac{1}{2}u_0(y))^2} \, dy \\ \Phi(\lambda) &:= \frac{1}{2} S(x_+(\lambda)) + \lambda x_+(\lambda) \\ &- \int_{x_+(\lambda)}^{+\infty} \left[\sigma \sqrt{(\lambda + \frac{1}{2}u_0(y))^2 - \rho_0(y)} - (\lambda + \frac{1}{2}u_0(y)) \right] \, dy. \end{aligned}$$

Semiclassical approximation of R_0^{ϵ} .

Since $|R_0^{\epsilon}(\lambda)|^2 + |T_0^{\epsilon}(\lambda)|^2 = 1$ holds, we will approximate $R_0^{\epsilon}(\lambda)$ by:

$$\tilde{R}_0^\epsilon(\lambda) := \chi_{[\lambda_-,\lambda_+]}(\lambda) \sqrt{1 - e^{-2\tau(\lambda)/\epsilon}} e^{-2i\Phi(\lambda)/\epsilon}, \quad \lambda \in \mathbb{R}$$

We will show directly that after replacing $R_0^{\epsilon}(\lambda)$ with $\tilde{R}_0^{\epsilon}(\lambda)$:

- The Riemann-Hilbert problem can indeed be solved as long as ε is sufficiently small.
- When t = 0, the extracted potential $\tilde{\psi}$ is close in the limit $\epsilon \to 0$ to the actual initial data.

It can be shown (dressing method) that $\tilde{\psi}$ is also an exact solution of the defocusing nonlinear Schrödinger equation.

Associated singular integral equations

Let Σ be an oriented contour (perhaps with self-intersection points), and let $\mathbf{V}: \Sigma \to SL(2, \mathbb{C})$ be a given jump matrix decaying to \mathbb{I} as $\lambda \to \infty$ along any unbounded arcs of Σ . A general Riemann-Hilbert problem is the following: find $\mathbf{M}: \mathbb{C} \setminus \Sigma \to SL(2, \mathbb{C})$ such that:

- Analyticity: M is analytic in its domain of definition, and takes boundary values $M_{\pm}: \Sigma \to SL(2, \mathbb{C})$ on Σ from the left (+) and right (-).
- Jump Condition: The boundary values are related by $\mathbf{M}_{+}(\lambda) = \mathbf{M}_{-}(\lambda)\mathbf{V}(\lambda)$ for $\lambda \in \Sigma$.
- Normalization: As $\lambda \to \infty$, $\mathbf{M}(\lambda) \to \mathbb{I}$.

This problem can be studied by converting it into a linear system of singular integral equations.

Aside: How to Solve a Riemann-Hilbert Problem

Associated singular integral equations

Subtract $\mathbf{M}_{-}(\lambda)$ from both sides of the jump condition:

$$\mathbf{M}_{+}(\lambda) - \mathbf{M}_{-}(\lambda) = \mathbf{M}_{-}(\lambda)(\mathbf{V}(\lambda) - \mathbb{I}), \quad \lambda \in \Sigma.$$

Taking into account the analyticity of **M** in $\mathbb{C} \setminus \Sigma$ and the asymptotic value of \mathbb{I} as $\lambda \to \infty$ it is necessary that $\mathbf{M}(\lambda)$ is given by the Cauchy integral (Plemelj formula):

$$\mathbf{M}(\lambda) = \mathbb{I} + \frac{1}{2\pi i} \int_{\Sigma} \frac{\mathbf{M}_{-}(\mu)(\mathbf{V}(\mu) - \mathbb{I})}{\mu - \lambda} \, d\mu, \quad \lambda \in \mathbb{C} \setminus \Sigma.$$

Letting λ tend to Σ from the right we obtain a closed equation for the boundary value $\mathbf{M}_{-}(\lambda)$, $\lambda \in \Sigma$:

$$\begin{split} \mathbf{X}(\lambda) &- \frac{1}{2\pi i} \int_{\Sigma} \frac{\mathbf{X}(\mu) (\mathbf{V}(\mu) - \mathbb{I})}{\mu - \lambda_{-}} \, d\mu = \frac{1}{2\pi i} \int_{\Sigma} \frac{\mathbf{V}(\mu) - \mathbb{I}}{\mu - \lambda_{-}} \, d\mu, \quad \lambda \in \Sigma, \\ \text{where } \mathbf{X}(\lambda) &:= \mathbf{M}_{-}(\lambda) - \mathbb{I}. \end{split}$$

Aside: How to Solve a Riemann-Hilbert Problem

Associated singular integral equations

If the jump matrix V depends on parameters (e.g., x, t, ϵ), one can consider the asymptotic behavior of the Riemann-Hilbert problem with respect to one or more parameters. While one could attempt to analyze the singular equation, this would generally be a difficult (perhaps impossible) task, and we will proceed differently.

The singular integral equation is perhaps the most useful in the *small* norm setting. This means that $\mathbf{V} - \mathbb{I}$ is small in both the $L^2(\Sigma)$ and $L^{\infty}(\Sigma)$ sense. The utility of such estimates is a consequence of the fact that for a general class of contours Σ , the operator

$$\mathbf{F} \mapsto rac{1}{2\pi i} \int_{\Sigma} rac{\mathbf{F}(\mu) \, d\mu}{\mu - \lambda_-}$$

is bounded on $L^2(\Sigma)$, with a norm that only depends on geometrical details of Σ . See Coifman, McIntosh, Meyer for Lipschitz arcs, and Beals and Coifman for self-intersection points.

Aside: How to Solve a Riemann-Hilbert Problem

Associated singular integral equations

For problems of small norm type, the following hold true:

- The singular integral equation can be solved in L²(Σ) by iteration (contraction mapping, or Neumann series). This guarantees existence and uniqueness of the solution.
- It also allows the solution to be constructed (approximated with arbitrary accuracy and estimated). The $L^2(\Sigma)$ norm of **X** is proportional to that of $\mathbf{V} \mathbb{I}$.
- Under suitable other technical assumptions, M(λ) has an asymptotic expansion as λ → ∞:

$$\mathbf{M}(\lambda) = \mathbb{I} + \sum_{n=1}^{N} \lambda^{-n} \mathbf{M}_n + \mathcal{O}(\lambda^{-(N+1)}), \quad \lambda \to \infty$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

and the moments M_n are bounded in terms of norms of V - I.

Riemann-Hilbert problem of inverse scattering.

Seek $M:\mathbb{C}\setminus [\lambda_-,\lambda_+]\to SL(2,\mathbb{C})$ with the following properties:

- Analyticity: M is analytic in its domain of definition and takes boundary values M_±(λ) on (λ_−, λ₊) from C_±.
- Jump Condition: $M_+(\lambda) = M_-(\lambda)V(\lambda)$ for $\lambda_- < \lambda < \lambda_+$, where

$$\mathbf{V}(\lambda) = \begin{bmatrix} e^{-2\tau(\lambda)/\epsilon} & -e^{-2i\theta(\lambda;x,t)/\epsilon}H^{\epsilon}(\lambda) \\ e^{2i\theta(\lambda;x,t)/\epsilon}H^{\epsilon}(\lambda) & 1 \end{bmatrix},$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

 $\theta(\lambda; x, t) := \lambda x + \lambda^2 t - \Phi(\lambda)$, and $H^{\epsilon}(\lambda) := \sqrt{1 - e^{-2\tau(\lambda)/\epsilon}}$.

• Normalization: As $\lambda \to \infty$, $\mathbf{M}(\lambda) \to \mathbb{I}$.

This is *not* a small-norm problem in the semiclassical limit $\epsilon \rightarrow 0$.

Introduction of *g*-function.

Let $g : \mathbb{C} \setminus [\lambda_-, \lambda_+] \to \mathbb{C}$ be analytic with $g(\infty) = 0$, and make the substitution $\mathbf{M}(\lambda) = \mathbf{N}(\lambda)e^{ig(\lambda)\sigma_3/\epsilon}$. Then $\mathbf{N} : \mathbb{C} \setminus [\lambda_-, \lambda_+] \to \mathrm{SL}(2, \mathbb{C})$ satisfies the conditions of this related Riemann-Hilbert problem:

- Analyticity: N is analytic in $\mathbb{C} \setminus [\lambda_-, \lambda_+]$, taking boundary values $N_{\pm}(\lambda)$ on $[\lambda_-, \lambda_+]$ from \mathbb{C}_{\pm} .
- Jump Condition: The boundary values are related by $N_+(\lambda) = N_-(\lambda)V^{(N)}(\lambda)$ for $\lambda_- < \lambda < \lambda_+$, where

$$\mathbf{V}^{(\mathbf{N})}(\lambda) := \begin{bmatrix} e^{2(\Delta(\lambda) - \tau(\lambda))/\epsilon} & -e^{-2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) \\ e^{2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) & e^{-2\Delta(\lambda)/\epsilon} \end{bmatrix},$$

 $2\Delta(\lambda) := -i(g_+(\lambda) - g_-(\lambda))$, and $2\phi(\lambda) := 2\theta(\lambda) - g_+(\lambda) - g_-(\lambda)$. • Normalization: As $\lambda \to \infty$, $\mathbf{N}(\lambda) \to \mathbb{I}$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

We further suppose that $g(\lambda) = g(\lambda^*)^*$, making ϕ and Δ real.

Choice of *g*-function.

Try to pick $g(\lambda)$ so that $(\lambda_{-}, \lambda_{+})$ splits into three types of subintervals:

- Voids: These are characterized by the conditions $\Delta(\lambda) \equiv 0$ and $\phi'(\lambda) > 0$.
- Bands: These are characterized by the conditions $0 < \Delta(\lambda) < \tau(\lambda)$ and $\phi'(\lambda) \equiv 0$.
- Saturated regions: These are characterized by the conditions $\Delta(\lambda) \equiv \tau(\lambda)$ and $\phi'(\lambda) < 0$.

We now examine the consequences of each type of interval for the jump matrix $\mathbf{V}^{(\mathbf{N})}(\lambda).$

Under the condition that $\Delta(\lambda) \equiv 0$, the jump matrix $V^{(N)}(\lambda)$ has an "upper-lower" factorization:

$$\mathbf{V}^{(\mathbf{N})}(\lambda) = \begin{bmatrix} 1 & -e^{-2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ e^{2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) & 1 \end{bmatrix}.$$

Let us assume that $\phi(\lambda)$ and $\tau(\lambda)$ are analytic (this will be the case if the initial data functions u_0 and ρ_0 are analytic). Then the condition $\phi'(\lambda) > 0$ makes $\phi(\lambda)$ a real analytic function that is strictly increasing in the void interval. By the Cauchy-Riemann equations, it follows that the imaginary part of $\phi(\lambda)$ is positive (negative) in the upper (lower) half-plane.

This implies that the first (second) matrix factor has an analytic continuation into the lower (upper) half-plane that is exponentially close to the identity matrix in the limit $\epsilon \to 0$.

The strict inequalities $0 < \Delta(\lambda) < \tau(\lambda)$ imply that the diagonal elements of $V^{(N)}(\lambda)$, namely

$$e^{2(\Delta(\lambda)- au(\lambda))/\epsilon}$$
 and $e^{-2\Delta(\lambda)/\epsilon}$

are both exponentially small in the semiclassical limit $\epsilon \to 0$. The condition $\phi'(\lambda) \equiv 0$ together with the inequality $\tau(\lambda) > 0$ that holds for all $\lambda \in (\lambda_-, \lambda_+)$ then implies that $\mathbf{V}^{(\mathbf{N})}(\lambda)$ is exponentially close in the semiclassical limit to a constant off-diagonal matrix:

$$\mathbf{V}^{(\mathbf{N})}(\lambda) = \begin{bmatrix} 0 & -e^{-2i\phi/\epsilon} \\ e^{2i\phi/\epsilon} & 0 \end{bmatrix} + \text{exponentially small terms}.$$

The real constant ϕ can be different for different bands, and it generally can depend on *x* and *t* (but not ϵ).

Saturated regions.

Under the condition that $\Delta(\lambda) \equiv \tau(\lambda)$, the jump matrix $\mathbf{V}^{(\mathbf{N})}(\lambda)$ has a "lower-upper" factorization:

$$\mathbf{V}^{(\mathbf{N})}(\lambda) = \begin{bmatrix} 1 & 0\\ e^{2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) & 1 \end{bmatrix} \begin{bmatrix} 1 & -e^{-2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda)\\ 0 & 1 \end{bmatrix}$$

The condition $\phi'(\lambda) < 0$ makes $\phi(\lambda)$ a real analytic function that is strictly decreasing in the void interval. By the Cauchy-Riemann equations, it follows that the imaginary part of $\phi(\lambda)$ is negative (positive) in the upper (lower) half-plane.

This again implies that the first (second) matrix factor has an analytic continuation into the lower (upper) half-plane that is exponentially close to the identity matrix in the limit $\epsilon \rightarrow 0$.

How does one find g?

Build *g* by (temporarily) ignoring the inequalities. Suppose that there are N + 1 bands in $(\lambda_{-}, \lambda_{+})$ that we will denote by (a_j, b_j) with $\lambda_{-} < a_0 < b_0 < a_1 < b_1 < \cdots < a_N < b_N < \lambda_{+}$. The complementary intervals are either voids or saturated regions.

Recall that the boundary values of g are subject to the following:

- g₊(λ) − g₋(λ) = 0 which implies g'₊(λ) − g'₋(λ) = 0 for λ in voids and outside of [λ₋, λ₊].
- $g'_+(\lambda) + g'_-(\lambda) = 2\theta'(\lambda)$ for λ in bands.
- g₊(λ) − g₋(λ) = 2iτ(λ) which implies g'₊(λ) − g'₋(λ) = 2iτ'(λ) for λ in saturated regions.

We therefore know $g'_+ - g'_-$ everywhere along \mathbb{R} with the exception of the band intervals, where we know instead $g'_+ + g'_-$.

Fact: these conditions make up an easy (scalar) Riemann-Hilbert problem that can be solved explicitly for $g'(\lambda)$; the solution also puts 2N + 2 conditions on the 2N + 2 band endpoints.

How does one find g?

If the equations on the unknowns $a_0, b_0, \ldots, a_N, b_N$ have a unique solution, then associated with the symbol sequence $(s_0, s_1, \ldots, s_{N+1})$, $s_n = V$ or $s_n = S$, indicating the types of complementary intervals in left-to-right order, $g(\lambda)$ is uniquely determined by integration.

Now recall the inequalities that the boundary values of g are supposed to satisfy. These inequalities should select:

- The value of N.
- The symbol sequence (s_0, \ldots, s_{N+1}) .

The procedure in practice is therefore to determine N and (s_0, \ldots, s_{N+1}) so that the inequalities are true. The independent variables x and t are parameters in this procedure. In particular, N = N(x, t).

Steepest descent: opening lenses.

To exploit the matrix factorizations, let Ω_{\pm}^{V} (Ω_{\pm}^{S}) denote the union of thin lens-shaped domains in \mathbb{C}_{\pm} that abut voids (saturated regions). Define the piecewise analytic matrix function L by

$$\mathbf{L}(\lambda) := \begin{cases} \begin{bmatrix} 1 & 0 \\ e^{2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) & 1 \end{bmatrix}, & \lambda \in \Omega^{\mathsf{V}}_{+}, \\ \begin{bmatrix} 1 & 0 \\ -e^{2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) & 1 \end{bmatrix}, & \lambda \in \Omega^{\mathsf{S}}_{-}, \\ \begin{bmatrix} 1 & e^{-2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) \\ 0 & 1 \end{bmatrix}, & \lambda \in \Omega^{\mathsf{V}}_{-} \\ \begin{bmatrix} 1 & -e^{-2i\phi(\lambda)/\epsilon}H^{\epsilon}(\lambda) \\ 0 & 1 \end{bmatrix}, & \lambda \in \Omega^{\mathsf{S}}_{+} \\ \mathbb{I}, & \text{otherwise.} \end{cases}$$

Make the substitution $\mathbf{N}(\lambda) = \mathbf{O}(\lambda)\mathbf{L}(\lambda)$. Then $\mathbf{O}(\lambda)$ satisfies the following Riemann-Hilbert problem...

Steepest descent: opening lenses.

- Analyticity: O is analytic in $\mathbb{C} \setminus \Sigma^{(O)}$, taking boundary values O_+ (O_) on each oriented arc of $\Sigma^{(O)}$ from the left (right).
- Jump Condition: The boundary values are related by $\mathbf{O}_+(\lambda) = \mathbf{O}_-(\lambda)\mathbf{V}^{(\mathbf{O})}$ for $\lambda \in \Sigma^{(\mathbf{O})}$.
- Normalization: As $\lambda \to \infty$, $\mathbf{O}(\lambda) \to \mathbb{I}$.

Parametrix construction.

Letting $\epsilon \to 0$ pointwise in λ along $\Sigma^{(\mathbf{O})}$, the jump matrix $\mathbf{V}^{(\mathbf{O})}(\lambda)$ converges to \mathbb{I} , except along each band (a_n, b_n) , where

$$\mathbf{V^{(O)}}(\lambda) = egin{bmatrix} 0 & -e^{-2i\phi_n/\epsilon} \ e^{2i\phi_n/\epsilon} & 0 \end{bmatrix} + ext{exponentially small terms}$$

where ϕ_n are well-defined real-valued functions of (x, t) that are independent of λ and ϵ . For a formal approximation of $\mathbf{O}(\lambda)$, solve the following: seek $\dot{\mathbf{O}}^{(\text{out})}$: $\mathbb{C} \setminus \text{bands} \to \text{SL}(2, \mathbb{C})$ with the properties

- Analyticity: $\dot{\mathbf{O}}^{(\text{out})}$ is analytic where defined and takes boundary values $\dot{\mathbf{O}}^{(\text{out})}_{\pm}(\lambda)$ from \mathbb{C}_{\pm} on each band (a_n, b_n) .
- Jump Condition: The boundary values satisfy (n = 0, ..., N)

$$\dot{\mathbf{O}}^{(\mathrm{out})}_{+}(\lambda) = \dot{\mathbf{O}}^{(\mathrm{out})}_{-}(\lambda) \begin{bmatrix} 0 & -e^{-2i\phi_n/\epsilon} \\ e^{2i\phi_n/\epsilon} & 0 \end{bmatrix}, \quad a_n < \lambda < b_n.$$

• Normalization: As $\lambda \to \infty$, $\dot{\mathbf{O}}^{(\text{out})}(\lambda) \to \mathbb{I}$.

Parametrix construction.

Since the jump matrix is discontinuous at the band endpoints, we need to specify a singularity at each; we will suppose that for all n,

$$\dot{\mathbf{O}}^{(\mathrm{out})}(\lambda) = O((\lambda - a_n)^{-1/4}(\lambda - b_n)^{-1/4}), \quad \lambda \to a_n, b_n.$$

With this condition, there is a unique solution for $\dot{\mathbf{O}}^{(\text{out})}(\lambda)$ that we call the *outer parametrix*. In general, it is constructed in terms of Riemann theta functions of genus *N*, but for *N* = 0 (one band) the solution is elementary:

$$\dot{\mathbf{O}}^{(\text{out})}(\lambda) = e^{-i\phi_0\sigma_3/\epsilon} \mathbf{A}\gamma(\lambda)^{\sigma_3} \mathbf{A}^{-1} e^{i\phi_0\sigma_3/\epsilon}, \quad \text{where} \quad \mathbf{A} := \begin{bmatrix} i & -i \\ 1 & 1 \end{bmatrix}$$

and where $\gamma(\lambda)$ is the function analytic for $\lambda \in \mathbb{C} \setminus [a_0, b_0]$ that satisfies

$$\gamma(\lambda)^4 = \frac{\lambda - b_0}{\lambda - a_0}$$
 and $\lim_{\lambda \to \infty} \gamma(\lambda) = 1.$

Parametrix construction.

The approximation of the jump matrix by piecewise constants is inaccurate near the band endpoints. In disks D_{a_0}, \ldots, D_{b_N} centered at the endpoints, it is necessary to use different (local) approximations of **O** called *inner parametrices*. These are built out of Airy functions.

Combining inner and outer parametrices gives rise to an explicit, ad-hoc approximation of $O(\lambda)$ called the *global parametrix* denoted $\dot{O}(\lambda)$ and defined piecewise:

$$\dot{\mathbf{O}}(\lambda) := \begin{cases} \dot{\mathbf{O}}^{(\mathrm{in},D_p)}(\lambda), \\ \dot{\mathbf{O}}^{(\mathrm{out})}(\lambda), \end{cases}$$

 $\lambda \in D_p, \quad p = a_0, \dots, b_N,$ otherwise.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Error analysis by small norm theory.

Let the error of the approximation be defined as the matrix function

 $\mathbf{E}(\lambda) := \mathbf{O}(\lambda) \dot{\mathbf{O}}(\lambda)^{-1}$

wherever both factors make sense. This makes $\mathbf{E}(\lambda)$ analytic on the complement of an arcwise oriented contour $\Sigma^{(\mathbf{E})}$ (pictured).

While **O** is only specified as the solution of a Riemann-Hilbert problem, the global parametrix $\dot{O}(\lambda)$ is known. Therefore we may regard the mapping $O \rightarrow E$ as a substitution resulting in an equivalent Riemann-Hilbert problem for **E**.

Error analysis by small norm theory.

Since both $O(\lambda) \to I$ (by normalization condition) and $O(\lambda) \to I$ (by construction) as $\lambda \to \infty$, we also must have $E(\lambda) \to I$ in this limit.

By direct calculations, one checks that as a consequence of the uniform boundedness of the outer parametrix outside all disks,

 $\mathbf{E}_{+}(\lambda) = \mathbf{E}_{-}(\lambda)(\mathbb{I} + o(1)) \quad \text{uniformly for } \lambda \in \Sigma^{(\mathbf{E})}.$

This means that $E(\lambda)$ satisfies the conditions of a Riemann-Hilbert problem of small norm type. Small-norm theory therefore implies that:

- E(λ) exists for sufficiently small ε and is unique, and hence (by unraveling the explicit substitutions) the same is true of M(λ).
- $\mathbf{E}(\lambda)$ has a Laurent series (convergent, because $\Sigma^{(\mathbf{E})}$ is bounded)

$$\mathbf{E}(\lambda) = \mathbb{I} + \sum_{n=1}^{\infty} \mathbf{E}_n \lambda^{-n}$$
 with $\mathbf{E}_n = o(1), \quad \forall n.$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Extraction of the solution $\tilde{\psi}$.

To calculate $\tilde{\psi}(x,t)$, recall that $\mathbf{L}(\lambda) = \mathbb{I}$ and $\dot{\mathbf{O}}(\lambda) = \dot{\mathbf{O}}^{(\text{out})}(\lambda)$ both hold for large enough $|\lambda|$, and that $g(\lambda) \to 0$ as $\lambda \to \infty$. Therefore,

$$\begin{split} \tilde{\psi}(x,t) &= 2i \lim_{\lambda \to \infty} \lambda M_{12}(\lambda) \\ &= 2i \lim_{\lambda \to \infty} \left[\mathbf{E}(\lambda) \dot{\mathbf{O}}^{(\text{out})}(\lambda) e^{ig(\lambda)\sigma_3/\epsilon} \right]_{12} \\ &= 2iE_{1,12} + 2i\dot{O}_{1,12}^{(\text{out})} \\ &= 2i\dot{O}_{1,12}^{(\text{out})} + o(1). \end{split}$$

When N = 0 (one band, (a_0, b_0)), this reads simply

$$\tilde{\psi}(x,t) = \frac{1}{2}(b_0 - a_0)e^{-2i\phi_0/\epsilon} + o(1), \quad \frac{\partial\phi_0}{\partial x} = \frac{1}{2}(a_0 + b_0).$$

This case can be proven to hold true for |t| sufficiently small, and when t = 0, $a_0 = \alpha(x)$ and $b_0 = \beta(x)$.

Genus bifurcations for larger t.

For larger *t*, the *g*-function theory tiles the (x, t)-plane with regions corresponding to different genera *N*. The earliest point of transition is the shock time for the dispersionless NLS system.

$$\rho_0(x) = \frac{1}{10} + \frac{1}{2}e^{-256x^2}$$

$$u_0(x) = 1$$

$$\epsilon = 0.0122$$
Periodic boundary conditions

Genus bifurcations in the *g*-function are the integrable nonlinear analogues of stationary phase point bifurcations in the linear theory.

Pure impulse Cauchy problem.

The sine-Gordon equation (in "laboratory coordinates") is:

$$\epsilon^2 u_{tt} - \epsilon^2 u_{xx} + \sin(u) = 0.$$

A "pure impulse" Cauchy problem on \mathbb{R} has initial data

$$u(x,0;\epsilon) = 0, \quad \epsilon u_t(x,0;\epsilon) = G(x), \quad x \in \mathbb{R},$$

where *G* is a given "impulse profile;" note that |G(x)| = 2 is a threshold for libration/rotation:

Double-scaling limit.

The behavior of $u(x, t; \epsilon)$ is universal near critical points where $|G(x_c)| = 2$, provided $G'(x_c) \neq 0$:

Let $\nu := [12G'(x_c)]^{-1} > 0$ and set $\Delta x := x - x_c$.

Aside: rational Painlevé-II functions.

Set $U_0(y) := 1$ and $V_0(y) := -y/6$. Generate $\{U_m, V_m\}_{m \in \mathbb{Z}}$ by the recursions

$$\mathcal{U}_{m+1}(y) := -\frac{1}{6}y\mathcal{U}_m(y) - \frac{\mathcal{U}_m'(y)^2}{\mathcal{U}_m(y)} + \frac{1}{2}\mathcal{U}_m''(y) \text{ and } \mathcal{V}_{m+1}(y) := \frac{1}{\mathcal{U}_m(y)}$$

$$\mathcal{U}_{m-1}(y) := \frac{1}{\mathcal{V}_m(y)}$$
 and $\mathcal{V}_{m-1}(y) := \frac{1}{2}\mathcal{V}_m'(y) - \frac{\mathcal{V}_m'(y)^2}{\mathcal{V}_m(y)} - \frac{1}{6}y\mathcal{V}_m(y).$

It turns out that $(U, V) = (U_m, V_m)$ satisfy for each *m* the coupled system of second-order Painlevé II-type equations

$$\mathcal{U}''(y) + 2\mathcal{U}(y)^2 \mathcal{V}(y) + \frac{1}{3} y \mathcal{U}(y) = 0$$

$$\mathcal{V}''(y) + 2\mathcal{U}(y) \mathcal{V}(y)^2 + \frac{1}{3} y \mathcal{V}(y) = 0.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Theorem (Buckingham & M., J. Anal. Math., 118, 2012.)

Fix an integer *m* and assume that (x, t) lies in the horizontal strip S_m in the (x, t)-plane given by the inequality $|t - \frac{2}{3}m\epsilon \log(\epsilon^{-1})| \le \frac{1}{3}\epsilon \log(\epsilon^{-1})$. Suppose also that $\Delta x = O(\epsilon^{2/3})$. Then

$$\cos(\frac{1}{2}\tilde{u}(x,t;\epsilon)) = (-1)^{m}\operatorname{sgn}(\mathcal{U}_{m}(y))\operatorname{sech}(T_{\mathsf{K}}) + E_{\cos}(x,t;\epsilon)$$
$$\sin(\frac{1}{2}\tilde{u}(x,t;\epsilon)) = (-1)^{m+1}\operatorname{tanh}(T_{\mathsf{K}}) + E_{\sin}(x,t;\epsilon)$$

where $E_{\rm cos}$ and $E_{\rm sin}$ are small error terms vanishing^a as $\epsilon \to 0$,

$$T_{\mathsf{K}} := \frac{t}{\epsilon} - 2m \log\left(\frac{4\nu^{1/3}}{\epsilon^{1/3}}\right) + \log|\mathcal{U}_m(y)|, \quad \text{and} \quad y := \frac{\Delta x}{2\nu^{1/3}\epsilon^{2/3}}.$$

^aexcept near distinguished points associated with singularities of $\log |\mathcal{U}_m|$.

▲ロト ▲圖ト ▲画ト ▲画ト 三国 - のへで

Double-scaling limit.

The universal wave pattern that appears can be described roughly as "kinks centered along real graphs of rational Painlevé-II functions":

The basic roadmap of the proof is as follows:

- Spectral data associated with the impulse profile *G* is calculated using WKB methods. The essential data is fully discrete.
- After some analytic interpolation steps, the inverse-scattering problem can be written as a matrix Riemann-Hilbert problem, albeit one on a complicated contour with self-intersections.

- Via systematic preparations (introduction of an appropriate *g*-function, Deift-Zhou steepest descent method) this problem is converted into another one with a jump matrix converging uniformly to something simple except near one point *w* = *w*_{*}. Away from this point there is an obvious approximate solution indexed by an arbitrary parameter *m* ∈ Z.
- A local parametrix required near the exceptional point brings in the rational Painlevé-II functions with index *m*, and the kinks.

- Via systematic preparations (introduction of an appropriate *g*-function, Deift-Zhou steepest descent method) this problem is converted into another one with a jump matrix converging uniformly to something simple except near one point *w* = *w*_{*}. Away from this point there is an obvious approximate solution indexed by an arbitrary parameter *m* ∈ Z.
- A local parametrix required near the exceptional point brings in the rational Painlevé-II functions with index *m*, and the kinks.

Thank You!